## Math 13 Worksheet \#12: Line integrals

(1) Give the vector field that is being integrated.

$$
\int_{C} x y^{2} d x+(x y-z) d y+\cos y d z
$$

(2) Compute $\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}$ where $\boldsymbol{F}(x, y, z)=<y z, x, z^{2}>$ with $C$ the straight line segment from the origin to $(1,0,4)$.
(3) Compute $\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}$ where $\boldsymbol{F}(x, y)=<y e^{x y}, x e^{x y}>$ with $C$ the cardioid $r=1+\sin (2 \theta)$ from $\theta=-\pi / 4$ to $\theta=3 \pi / 4$.
(4) Compute $\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}$ where $\boldsymbol{F}(x, y)=<2 z+y, x, 2 z+2 x>$ with $C$ the curve $\boldsymbol{r}(t)=<t^{2}, t, 3 t>, 1 \leq t \leq 2$.

