For the following problems, use the Fundamental Thm for line integrals, if applicable, to evaluate $\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}$. Otherwise show that the vector field is not conservative.
(1) $\boldsymbol{F}(x, y, z)=<-z, 1, x>$ with C a circular helix given by $x=\cos t, y=t$, and $z=\sin t$, for $0 \leq t \leq 2 \pi$.
(2) $\boldsymbol{F}(x, y, z)=<y z^{x y} \ln z, x z^{x y} \ln z, \frac{x y z^{x y}}{z}>$ with C any curve from $(0,0,1)$ to $(2,16,3)$.
(3) $\boldsymbol{F}(x, y, z)=<y z e^{x y z}+2, x z e^{x y z}-1, x y e^{x y z}>$ and C is the curve of intersection of the surface $z=\sqrt{x^{2}+y^{2}}$ and the plane $z-x+y=10$.

