Math 13, Spring 2014 - Homework Solutions Week 8
(1) (Chapter 16.7, Problem \#4) Suppose that $f(x, y, z)=g\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)$, where g is a function of one variable such that $g(2)=-5$. Evaluate $\int_{S} f(x, y, z) d S$, where S is the sphere $x^{2}+y^{2}+z^{2}=4$.

Solution. $\int_{S} f(x, y, z) d S=\int_{S} g(\sqrt{4}) d S=-5 \cdot \int_{S} d S=-5 \cdot 16 \pi=$ -80π.
(2) (Chapter 16.7, Problem \#39) Find the center of mass of the hemisphere $x^{2}+y^{2}+z^{2}=a^{2}, z \geq 0$, if it has constant density.

Solution. The surface is symmetric around the z-axis so its center of mass will have coordinates $(0,0, \bar{z})$. We can omit the density k from the integrals since it will disappear when we compute \bar{z}. The integral $\int_{S} z d S$ can be done by parametrizing the surface as a function, $z=$ $\sqrt{a^{2}-x^{2}-y^{2}}$. Then

$$
d S=\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d A=\sqrt{\frac{a^{2}}{a^{2}-x^{2}-y^{2}}} d A
$$

so the integral is $\iint_{D} a d A=a \cdot \pi a^{2}=\pi a^{3}$. The mass (with density $k=1)$ of the hemisphere equals $2 \pi a^{2}$, so $\bar{z}=\frac{\pi a^{3}}{2 \pi a^{2}}=\frac{a}{2}$.
(3) (Chapter 16.7, Problem \#29) Let $\mathbf{F}=\langle x, 2 y, 3 z\rangle$, and let S be the cube with vertices $(\pm 1, \pm 1, \pm 1)$ with positive orientation. Evaluate $\int_{S} \mathbf{F} \cdot d \mathbf{S}$.

Solution. Each face of the cube will have a normal vector $\pm \mathbf{i}, \pm \mathbf{j}$, or $\pm \mathbf{k}$, and each face has area 4. The flux integral equals the sum over all the faces of $\int_{\text {face }} \mathbf{F} \cdot \mathbf{n} d S=1 \cdot 4+1 \cdot 4+2 \cdot 4+2 \cdot 4+3 \cdot 4+3 \cdot 4=48$.
(4) (Chapter 16.7, Problem \#49) Let F be an inverse square vector field (ie, $\mathbf{F}(\mathbf{r})=\frac{c \mathbf{r}}{|\mathbf{r}|^{3}}$ for some constant c, where $\mathbf{r}=\langle x, y, z\rangle$. Show that the flux of F across a sphere S centered at the origin is independent of the radius of S.

Solution. The quantity $|\mathbf{r}|$ is the radius of the sphere, which we may write as the constant a. We can write $\mathbf{F}=\frac{c}{a^{2}}\left\langle\frac{x}{a}, \frac{y}{a}, \frac{z}{a}\right\rangle$. The vector part of this expression is a unit vector normal to the sphere.

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S & =\frac{c}{a^{2}}\left\langle\frac{x}{a}, \frac{y}{a}, \frac{z}{a}\right\rangle \cdot\left\langle\frac{x}{a}, \frac{y}{a}, \frac{z}{a}\right\rangle d S \\
& =\iint_{S} \frac{c}{a^{2}} \cdot \frac{a^{2}}{a^{2}} d S \\
& =\frac{c}{a^{2}} \cdot 4 \pi a^{2} \\
& =4 c \pi
\end{aligned}
$$

The result is constant, not dependent on the radius a.

