Math 13, Spring 2014 – Homework Solutions Week 6

(1) (Problem #2, Chapter 16.4) Evaluate the line integral below by using two methods: Direct evaluation and Green's Theorem. Verify that the answers are identical.

$$\int_C xy \, dx + x^3 \, dy$$

where C is the rectangle (with positive orientation) with vertices (0, 0), (3, 0), (3, 1) and (0, 1).

Solution. Using Green's Theorem with P = xy and $Q = x^3$, we note that both P an Q are have continuous partial derivatives on the plane, so Green's Theorem applies.

$$\iint_{R} 3x^{2} - x \, dA = \int_{0}^{3} \int_{0}^{1} 3x^{2} - x \, dy \, dx$$
$$= (3x^{2} - x)y \Big|_{0}^{1}$$
$$= \int_{0}^{3} 3x^{2} - x \, dx$$
$$= x^{3} - \frac{x^{2}}{2} \Big|_{0}^{3}$$
$$= \frac{45}{2}$$

To compute the integral directly, we consider C to be the union of 4 line segments.

On $(0,0) \rightarrow (3,0)$: Use x as the parameter; y = 0 and dy = 0

$$\int_0^3 0\,dx = 0$$

On $(3,0) \rightarrow (3,1)$: Use y as the parameter; x = 3 and dx = 0

$$\int_0^1 3^3 \, dy = 27$$

On $(3,1) \rightarrow (0,1)$: Use x as the parameter; y = 3, dy = 0

$$\int_{3}^{0} x \, dx = \frac{x^2}{2} \Big|_{3}^{0} = -\frac{9}{2}$$

On $(0,1) \rightarrow (0,0)$: Use y as the parameter; x = 0, dx = 0

$$\int_1^0 0\,dy = 0$$

Value of integral $= 0 + 27 - \frac{9}{2} + 0 = \frac{45}{2}$

(2) (Problem #22, Chapter 16.4) Let D be a region bounded by a simple closed path C in the xy-plane. Use Green's Theorem to prove that the coordinates (\bar{x}, \bar{y}) of the centroid (the centroid is the center of mass of D, if we assume that D is a lamina of uniform density) of D are

$$\bar{x} = \frac{1}{2A} \int_C x^2 \, dy, \quad \bar{y} = -\frac{1}{2A} \int_C y^2 \, dx$$

Solution. We may assume the density equals 1 in our calculations, since because it is constant it will cancel when we compute \bar{x} and \bar{y} . The mass then is

$$\iint_D 1 \, dA = A$$

The calculations for M_y and M_x are

$$M_{y} = \iint_{D} x \, dA$$

= $\int_{C} \frac{x^{2}}{2} \, dy$ (using Green's Theorem with $Q = \frac{x^{2}}{2}, P = 0$)
 $M_{x} = \iint_{D} y \, dA$
= $\int_{C} -\frac{y^{2}}{2} \, dx$ (using Green's Theorem with $P = -\frac{y^{2}}{2}, Q = 0$)

Therefore $\bar{x} = \frac{\int_C \frac{x^2}{2} dy}{A}$ and $\bar{y} = \frac{\int_C -\frac{y^2}{2} dx}{A}$ as desired.

- (3) (Problem #12, Chapter 16.5) Let f be a scalar function and $F : \mathbb{R}^3 \to \mathbb{R}^3$ be a vector field. State whether each expression below is meaningful. If not, explain why. If so, state whether it is a scalar function or a vector field, and give a brief explanation why.
 - (a) curl f
 - (b) grad f
 - (c) div F
 - (d) curl grad f
 - (e) grad F
 - (f) grad div F
 - (g) div grad f
 - (h) grad div f
 - (i) curl curl F
 - (j) div div F
 - (k) grad $f \times \operatorname{div} F$
 - (l) div curl grad f

Solution.

- (a) No defined only for vector field
- (b) Yes result is a vector field
- (c) Yes result is a scalar function
- (d) Yes result is the zero vector field
- (e) No defined only for scalar function
- (f) Yes result is a vector field
- (g) Yes result is a scalar function
- (h) Yes result is a vector field
- (i) Yes result is a vector field
- (j) No div F is a scalar function, second div operator is not defined
- (k) No div F is not a vector

- (l) Yes result is a scalar function
- (4) (Problem #20, Chapter 16.5) Is there a smooth vector field G on \mathbb{R}^3 such that $\nabla \times G = \langle xyz, y^2z, yz^2 \rangle$? Explain.

Solution.

If G is a smooth vector field, we must have div curl G = 0. But

div
$$\langle xyz, y^2z, yz^2 \rangle = yz + 2yz + 2yz = 5yz \neq 0$$

so such a G does not exist.