Math 13, Spring 2014 - Homework Solutions Week 6

(1) (Problem \#2, Chapter 16.4) Evaluate the line integral below by using two methods: Direct evaluation and Green's Theorem. Verify that the answers are identical.

$$
\int_{C} x y d x+x^{3} d y
$$

where C is the rectangle (with positive orientation) with vertices $(0,0)$, $(3,0),(3,1)$ and $(0,1)$.

Solution. Using Green's Theorem with $P=x y$ and $Q=x^{3}$, we note that both P an Q are have continuous partial derivatives on the plane, so Green's Theorem applies.

$$
\begin{aligned}
\iint_{R} 3 x^{2}-x d A & =\int_{0}^{3} \int_{0}^{1} 3 x^{2}-x d y d x \\
& =\left.\left(3 x^{2}-x\right) y\right|_{0} ^{1} \\
& =\int_{0}^{3} 3 x^{2}-x d x \\
& =x^{3}-\left.\frac{x^{2}}{2}\right|_{0} ^{3} \\
& =\frac{45}{2}
\end{aligned}
$$

To compute the integral directly, we consider C to be the union of 4 line segments.

On $(0,0) \rightarrow(3,0)$: Use x as the parameter; $y=0$ and $d y=0$

$$
\int_{0}^{3} 0 d x=0
$$

On $(3,0) \rightarrow(3,1)$: Use y as the parameter; $x=3$ and $d x=0$

$$
\int_{0}^{1} 3^{3} d y=27
$$

On $(3,1) \rightarrow(0,1):$ Use x as the parameter; $y=3, d y=0$

$$
\int_{3}^{0} x d x=\left.\frac{x^{2}}{2}\right|_{3} ^{0}=-\frac{9}{2}
$$

On $(0,1) \rightarrow(0,0)$: Use y as the parameter; $x=0, d x=0$

$$
\int_{1}^{0} 0 d y=0
$$

Value of integral $=0+27-\frac{9}{2}+0=\frac{45}{2}$
(2) (Problem \#22, Chapter 16.4) Let D be a region bounded by a simple closed path C in the $x y$-plane. Use Green's Theorem to prove that the coordinates (\bar{x}, \bar{y}) of the centroid (the centroid is the center of mass of D, if we assume that D is a lamina of uniform density) of D are

$$
\bar{x}=\frac{1}{2 A} \int_{C} x^{2} d y, \quad \bar{y}=-\frac{1}{2 A} \int_{C} y^{2} d x
$$

Solution. We may assume the density equals 1 in our calculations, since because it is constant it will cancel when we compute \bar{x} and \bar{y}. The mass then is

$$
\iint_{D} 1 d A=A
$$

The calculations for M_{y} and M_{x} are

$$
\begin{aligned}
M_{y} & =\iint_{D} x d A \\
& \left.=\int_{C} \frac{x^{2}}{2} d y \quad \text { (using Green's Theorem with } Q=\frac{x^{2}}{2}, P=0\right) \\
M_{x} & =\iint_{D} y d A \\
& =\int_{C}-\frac{y^{2}}{2} d x \quad\left(\text { using Green's Theorem with } P=-\frac{y^{2}}{2}, Q=0\right)
\end{aligned}
$$

Therefore $\bar{x}=\frac{\int_{C} \frac{x^{2}}{2} d y}{A}$ and $\bar{y}=\frac{\int_{C}-\frac{y^{2}}{2} d x}{A}$ as desired.
(3) (Problem \#12, Chapter 16.5) Let f be a scalar function and $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a vector field. State whether each expression below is meaningful. If not, explain why. If so, state whether it is a scalar function or a vector field, and give a brief explanation why.
(a) curl f
(b) $\operatorname{grad} f$
(c) $\operatorname{div} F$
(d) curl grad f
(e) $\operatorname{grad} F$
(f) $\operatorname{grad} \operatorname{div} F$
(g) div grad f
(h) grad $\operatorname{div} f$
(i) curl curl F
(j) div $\operatorname{div} F$
(k) $\operatorname{grad} f \times \operatorname{div} F$
(l) div curl grad f

Solution.

(a) No - defined only for vector field
(b) Yes - result is a vector field
(c) Yes - result is a scalar function
(d) Yes - result is the zero vector field
(e) No - defined only for scalar function
(f) Yes - result is a vector field
(g) Yes - result is a scalar function
(h) Yes - result is a vector field
(i) Yes - result is a vector field
(j) No - $\operatorname{div} F$ is a scalar function, second div operator is not defined
(k) No - $\operatorname{div} F$ is not a vector
(l) Yes - result is a scalar function
(4) (Problem \#20, Chapter 16.5) Is there a smooth vector field G on \mathbb{R}^{3} such that $\nabla \times G=\left\langle x y z, y^{2} z, y z^{2}\right\rangle$? Explain.

Solution.

If G is a smooth vector field, we must have div curl $G=0$. But

$$
\operatorname{div}\left\langle x y z, y^{2} z, y z^{2}\right\rangle=y z+2 y z+2 y z=5 y z \neq 0
$$

so such a G does not exist.

