Math 13, Spring 2014 - Homework Solutions Week 4

(1) (Problem $\# 66$, Chapter 12.5) Find parametric equations for the line through the point $P(0,1,2)$ that is perpendicular to the line L given by equations $x=1+t, y=1-t, z=2 t$ and intersects this line.

Solution. Let $Q=(1+a, 1-a, 2 a)$ be the point on L such that vector $\overrightarrow{P Q}$ is perpendicular to $L . \overrightarrow{P Q}=\langle 1+a,-a, 2 a-2\rangle$. The vector giving the direction of L is $\vec{v}=\langle 1,-1,2\rangle$.
$\overrightarrow{P Q} \cdot \vec{v}=1+a+a+4 a-4=0$, so $a=\frac{1}{2}$.
Therefore $\overrightarrow{P Q}=\left\langle-\frac{3}{2},-\frac{1}{2}, 0\right\rangle$ and the parametric equations of the solution line are $x=\frac{3}{2} s, y=1-\frac{1}{2} s, z=2$.
(2) (Problem \#50, Chapter 12.3) A tow truck drags a stalled car along a road. The chain makes an angle of 30 degrees with the road and tension in the chain is 1500 N . How much work is done by the truck in pulling the car 1 km ?

Solution. $(1500 \mathrm{~N})(1 \mathrm{~km})\left(\cos \left(30^{\circ}\right)\right)=750 \sqrt{3}$ Newton-kilometers
(3) (Problem \#48, Chapter 12.3) Suppose that \vec{a} and \vec{b} are nonzero.
(a) Under what circumstances is $\operatorname{comp}_{\vec{a}} \vec{b}=\operatorname{comp}_{\vec{b}} \vec{a}$?

Solution. $\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$ means $|\vec{a}|=|\vec{b}|$ (the vectors have the same magnitude).
(b) Under what circumstances is $\operatorname{proj}_{\vec{a}} \vec{b}=\operatorname{proj}_{\vec{b}} \vec{a}$? Solution. $\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}} \vec{a}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^{2}} \vec{b}$ means $|\vec{a}| \frac{\vec{b}}{|\vec{b}|}=|\vec{b}| \frac{\vec{a}}{|\vec{a}|}$, or $\vec{a}=\frac{|\vec{a}|^{2}}{|\vec{b}|^{2}} \vec{b}$. $|\vec{a}| \frac{\vec{b}}{|\vec{b}|}=|\vec{b}| \frac{\vec{a}}{|\vec{a}|}$ implies the vectors have the same magnitude, while $\vec{a}=\frac{|\vec{a}|^{2}}{|\vec{b}|^{2}} \vec{b}$ implies they point in the same direction. Therefore \vec{a} equals \vec{b}.
(4) (Problem $\# 72$, Chapter 14.3) If $g(x, y, z)=\sqrt{1+x z}+\sqrt{1-x y}$, find $g_{x y z}$.

Solution. Since $\frac{\partial}{\partial y} \sqrt{1+x z}=0$ and $\frac{\partial}{\partial z} \sqrt{1-x y}=0, g_{x y z}=0$.
(5) Suppose you need to know an equation for the tangent plane to a surface S at the point $P(1,2,3)$. You do not have an equation for S but you know that the curves $r_{1}(t)=\left\langle 1+3 t, 2-t^{2}, 3-4 t-t^{2}\right\rangle, r_{2}(u)=\langle 1+$ $\left.u^{2}, 2 u^{3}+2,2 u+3\right\rangle$ both lie on S. Find an equation of the tangent plane at P.

Solution. P is on both curves, where $t=0$ and $u=0$. The vectors $r_{1}^{\prime}(0)$ and $r_{2}^{\prime}(0)$ will be tangent to the surface, and therefore their cross product will be perpendicular to S at P and we can use it in the equation of the tangent plane.
$r_{1}^{\prime}(t)=\langle 3,-2 t,-4-2 t\rangle ; r_{1}^{\prime}(0)=\langle 3,0,-4\rangle$
$r_{2}^{\prime}(u)=\left\langle 2 u, 6 u^{2}, 2\right\rangle ; r_{2}^{\prime}(u)=\langle 0,0,2\rangle$
$\langle 3,0,-4\rangle \times\langle 0,0,2\rangle=\langle 0,-6,0\rangle$ so the equation of the tangent plane is $-6(y-2)=0$.
(6) (Problem \#62, Chapter 14.6) Show that the pyramids cut off from the first octant by any tangent planes to the surface $x y z=1$ at points in the first octant must all have the same volume.

Solution. Let $P(a, b, c)$ be a point on the surface in the first octant. To find the equation of the tangent plane, we need to evaluate the partial derivatives at P.
$f_{x}=y z ; f_{x}(P)=b c$
$f_{y}=x z ; f_{y}(P)=a c$
$f_{z}=x y ; f_{z}(P)=a b$
The tangent plane is $b c(x-a)+a c(y-b)+a b(z-c)=0$, which can be rearranged using the fact that $a b c=1$ to get $x / a+y / b+z / c=3$. The intercepts of the plane are the points $(3 a, 0,0),(0,3 b, 0),(0,0,3 c)$, and these along with $(0,0,0)$ determine the pyramid.
The base of the pyramid is the triangle with vertices $(0,0,0),(3 a, 0,0)$, $(0,3 b, 0)$ which has area $\frac{9}{2} a b$. The height of the pyramid is $3 c$, so its volume is $\frac{1}{3} \cdot \frac{9}{2} a b \cdot 3 c=\frac{9}{2} a b c=\frac{9}{2}$. Since (a, b, c) is any point on the surface in the first octant, all pyramids have the same volume.

