## Math 13 Fall 2009 practice exam

1. Find the equation of the plane containing the two lines

$$
x=1+t \quad y=1+2 t \quad z=1+3 t
$$

and

$$
x=-3+2 t \quad y=-2-t \quad z=-4-t
$$

2. Express the vector $\langle 5,1,2\rangle$ as a sum of a vector parallel to $\langle 1,2,2\rangle$ and a vector orthogonal to $\langle 1,2,2\rangle$.
3. Assume that the height of a mountain is given by the graph $z=f(x, y)$.
a) Suppose that at the point $P$ the slope due east is $\frac{1}{3}$ and the slope due north is $-\frac{1}{3}$. In what direction should you head in order to ascend most rapidly? In what direction should you head to descend most rapidly?
b) Suppose that at the point $Q$ the slope in the direction $\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle$ is 2 and in the direction $\langle 1,0\rangle$ it is 3 . Find

$$
\frac{\partial f}{\partial y}
$$

at the point $Q$.
4. Let $f(x, y)=2+\ln \left(x^{2}+y^{2}\right)$.
a) Sketch at least three level curves of $f$.
b) Find the tangent plane to the graph of $f$ at the point $(x, y)=(1,1)$.
c) Find the tangent line at $(1,1)$ to the level curve of $f$ that passes through that point.
5. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $f(x, y)=\left(x^{2} y+y^{2}, x+2 x y\right)$. Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $g(s, t)=\left(s-t, s^{2}-t^{3}\right)$.
a) Find $(f \circ g)^{\prime}(3,2)$.
b) Writing $f(x, y)=(u, v)$ read of from part a) the partial

$$
\frac{\partial v}{\partial s}(3,2)
$$

6. Compute the following interated integrals.
a)

$$
\int_{-1}^{2} \int_{1}^{4} x^{2} \ln (y) d y d x
$$

b)

$$
\int_{2}^{5} \int_{x-1}^{x^{2}} \cos (x) y d y d x
$$

c)

$$
\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} \frac{y}{1+x} d y d x
$$

7. Consider the curve $r(t)=\left(t^{2}, t, t^{3}-1\right)$. Find all points on this curve at which the tangent line to the curve is parallel to the plane $x-y+z=0$. (You can either specify the points or just give the values of $t$ that give the points).
