Math 13 Fall 2009 Homework 8 Due 11/20/2009
1.) We have seen in class that for a conservative vector field, $\mathbf{F}=\nabla f$, it is the case that curlF $=(0,0,0)$. Furthermore we also saw that for a vector field \mathbf{H} which is the curl of another vector field, that is $\mathbf{H}=$ curlG, it is the case that $\operatorname{div} \mathbf{H}=0$. You may wonder if there is a special relationship for a scalar function f which is the divergence of a vector field \mathbf{X}, that is $f=\operatorname{div} \mathbf{X}$ (here we are using the symbol \mathbf{X} to represent a vector field). For example, you might believe (but you would be wrong) that maybe $\nabla f=0$ if $f=\operatorname{div} \mathbf{X}$. In this problem you will show that no such relationship is possible because every continuous function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is the divergence of some vector field \mathbf{X}.
a.) To help you get an idea of how to setup your proof, first do the following calculations which finds the vector field \mathbf{X} whose divergence is the function $f(x, y, z)=x^{2}+\sin (y z)$. First find the function $g(x, y, z)=\int_{0}^{x} f(t, y, z) d t$.
b.) Calculate the divergence of the vector field $\mathbf{G}(x, y, z)=(g(x, y, z), 0,0)$.
c.) Prove that in general, for any continuous function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, the vector field $\mathbf{G}(x, y, z)=\left(\int_{0}^{x} f(t, y, z) d t, 0,0\right)$ has divergence equal to f.
d.) Why is it not the case that if $f=\operatorname{div} \mathbf{X}, \nabla f=0$?
e.) Write a few sentences explaining why there can be no special relationship (or equation) involving a scalar function f which is the divergence of a vector field \mathbf{X}. (Hint: This is easy.)
2.) Is it possible that two different vector fields \mathbf{F} and \mathbf{G} have $\operatorname{div} \mathbf{F}=\operatorname{div} \mathbf{G}$? If not, prove it. If so, give an example where it is true. You may find it helpful to consider your work in problem 1.
3.) Use a computer graphing system to draw one arch of the cycloid $\mathbf{r}(t)=$ $(t-\sin t, 1-\cos t)$. Use Green's Theorem to find the area under one arch of the cycloid.
4) Let $F(x, y)=\left\langle y^{3}-y,-2 x^{3}\right\rangle$. Find the positivly oriented closed simple curve c for which the line integral $\int_{c} F \circ c d s$ is maximal. Then compute the line integral.
Hint: Use Green's theorem, the integral will be maximal when you choose the area so that the function you are integrating is always positive. You can
either use the trigonometric identities
$\cos ^{2}(t)=\frac{1}{2}(1+\cos (2 t))$ and $\sin ^{2}(t)=\frac{1}{2}(1-\cos (2 t))$
or a computer algebra program to solve the integral.

