1.) Given a vector field $\mathbf{F}(x, y)=(P(x, y), Q(x, y))$, a parameterized curve $\mathbf{r}(t)$ with $a \leq t \leq b$ is called an integral curve of \mathbf{F} if $\mathbf{r}^{\prime}(t)=\mathbf{F}(\mathbf{r}(t))$ for $a \leq t \leq b$.
a.) Show that the vector field $\mathbf{F}(x, y)=(-9 y, x)$ is not conservative.
b.) Prove that $\mathbf{r}(t)=(3 \cos (3 t), \sin (3 t))$ is an integral curve of \mathbf{F} for $0 \leq t \leq$ $\frac{2}{3} \pi$.
c.) Calculate the work done by the vector field \mathbf{F} on a particle traveling along the curve $\mathbf{r}(t)=(3 \cos (3 t), \sin (3 t))$ from $0 \leq t \leq \frac{2}{3} \pi$.
d.) Calculate the work done by the vector field \mathbf{F} on a particle traveling along the curve $\mathbf{r}(t)=(3 \cos (3 t), 3 \sin (3 t))$ from $0 \leq t \leq \frac{2}{3} \pi$.
e.) Are the integrals from (c) and (d) equal? Explain why or why not.
2.) Consider the vector field $\mathbf{G}(x, y)=(1,1)$.
a.) Show that \mathbf{G} is conservative, and find scalar potential function of \mathbf{G}.
b.) Find an integral curve $\mathbf{r}(t)$ of \mathbf{G} such that $\mathbf{r}(0)=(0,1)$ for $0 \leq t \leq 1$. What is the point $\mathbf{r}(1)$?
c.) What is the line integral of the vector field along the integral curve you found in part (b)?

