Math 13 Fall 2009 Homework 10

1. Let $z=f(x, y)=-\left(x^{2}+y^{2}\right)^{2}+3\left(x^{2}+y^{2}\right)+4$ and $z=g(x, y)=$ $x^{2}+y^{2}-4$.
a) Compute the intersection of the graphs of the two functions in \mathbb{R}^{3}. We will denote this curve by $\gamma(t)$.
b) Compute the volume between the graphs.
c) Find the local maxima and minima of f (there is just one).
d) Compute the angle of intersection between them at the point $(2,0,0)$. Hint: The angle between the surfaces is the angle between the tangent planes. e) Let $c(t)=g\left(\sqrt{3} t, t^{2}\right)$. Compute the intersection of $c(t)$ with the graph of f. This becomes a lot easier if you use what you found in part a).
d) Use the chain rule to find $\frac{\partial}{\partial t} c(t)$. Set up the integral to find the arclength of $c(t)$ between the two intersections points, then use a computer to find a numeric approximation to the length.
f) Let $F(x, y, z)=\left\langle\sin (x)+e^{z^{2}}, x\left(z^{3}+1\right), 2^{\sin (x)} 3^{\cos (z)}\right\rangle$. Use Stokes theorem to compute the integral of $\int_{\gamma}(F \circ \gamma)(t) \cdot \gamma^{\prime}(t) d t$. Choose the surface you integrate over very carefully.
g) Let $G(x, y, z)=\left\langle x^{3}, y^{3}, z^{3}\right\rangle$. Use the divergence theorem to compute the integral of G over the surface f.
