Math 13 Fall 2004
 Calculus of Vector-valued Functions

 Example of a function that has both partial derivatives at $(0,0)$,

 Example of a function that has both partial derivatives at $(0,0)$, but is not differentiable there

 but is not differentiable there}

Consider a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$:

$$
f(x, y)= \begin{cases}\frac{x^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if } x=y=0\end{cases}
$$

One can check that f is continuous everywhere in \mathbb{R}^{2}. We can compute its both partial derivatives at $(0,0)$ explicitly:

$$
\begin{aligned}
& f_{x}(0,0)=\frac{\partial f}{\partial x}(0,0)=\lim _{x \rightarrow 0} \frac{f(x, 0)}{x}=\lim _{x \rightarrow 0} \frac{x^{3}}{\left(x^{2}+0^{2}\right) x}=\lim _{x \rightarrow 0} 1=1 \\
& f_{y}(0,0)=\frac{\partial f}{\partial x}(0,0)=\lim _{y \rightarrow 0} \frac{f(0, y)}{y}=\lim _{y \rightarrow 0} \frac{0^{3}}{\left(0^{2}+y^{2}\right) y}=\lim _{y \rightarrow 0} 0=0
\end{aligned}
$$

So the linear approximation of f at $(0,0)$ would be $h(x, y)=x$. Let's check how good it is:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-h(x, y)}{\|(x, y)-(0,0)\|}=\lim _{(x, y) \rightarrow(0,0)} \frac{\frac{x^{3}}{x^{2}+y^{2}}-x}{\sqrt{x^{2}+y^{2}}}=-\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{\sqrt{x^{2}+y^{2}}\left(x^{2}+y^{2}\right)}
$$

But this limit does not exist. Indeed, if $x=0$, it should be 0 , but if $y=x$, it should be -1 for $x>0$ and 1 for $x<0$.

The function f is not differentiable at $(0,0)$.
The reason is that its partial derivatives are both not continuous in a neighborhood of $(0,0)$:

$$
f_{x}(x, y)=\frac{\partial f}{\partial x}(x, y)=\frac{x^{2}\left(x^{2}+3 y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \quad \text { and } \quad f_{y}(x, y)=\frac{\partial f}{\partial y}(x, y)=-\frac{2 x^{3} y}{\left(x^{2}+y^{2}\right)^{2}}
$$

The limits of both f_{x} and f_{y} DNE as $(x, y) \rightarrow(0,0)$. If $x=0$, they should be both 0 , but if $y=x$, they should be 1 and $-1 / 2$, respectively.

