MATH 13 FALL 2004

CALCULUS OF VECTOR-VALUED FUNCTIONS

Example of a function that has both partial derivatives at (0, 0),
but is not differentiable there

Consider a function f : R? — R:
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One can check that f is continuous everywhere in R?. We can compute its both partial

derivatives at (0,0) explicitly:
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So the linear approximation of f at (0,0) would be h(x,y) = . Let’s check how good it is:
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But this limit does not exist. Indeed, if x = 0, it should be 0, but if y = z, it should be —1
for x > 0 and 1 for x < 0.
The function f is not differentiable at (0,0).
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The reason is that its partial derivatives are both not continuous in a neighborhood of (0, 0):
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The limits of both f, and f, DNE as (x,y) — (0,0). If = 0, they should be both 0, but if
y = x, they should be 1 and —1/2, respectively.



