Math 13 Fall 2004
 Calculus of Vector-valued Functions
 Example of a function that has different mixed partial derivatives at (0,0)

Consider a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$:

$$
f(x, y)= \begin{cases}\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if } x=y=0\end{cases}
$$

The partial derivatives of f are given by

$$
f_{x}(x, y)= \begin{cases}\frac{y\left(x^{4}-y^{4}-4 x^{2} y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if } x=y=0\end{cases}
$$

and

$$
f_{y}(x, y)= \begin{cases}\frac{x\left(x^{4}-y^{4}-4 x^{2} y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if } x=y=0\end{cases}
$$

One can check that f as well as f_{x} and f_{y} are continuous everywhere in \mathbb{R}^{2}. Hence, f is differentiable in \mathbb{R}^{2}.

We can compute the second order mixed partial derivatives of f at $(0,0)$ explicitly:

$$
\begin{gathered}
f_{y x}(0,0)=\frac{\partial}{\partial x}\left(f_{y}\right)(0,0)=\lim _{x \rightarrow 0} \frac{f_{y}(x, 0)}{x}=\lim _{x \rightarrow 0} \frac{x\left(x^{4}-0^{4}-4 x^{2} 0^{2}\right)}{\left(x^{2}+0^{2}\right)^{2} x}=\lim _{x \rightarrow 0} 1=1 \\
f_{x y}(0,0)=\frac{\partial}{\partial y}\left(f_{x}\right)(0,0)=\lim _{y \rightarrow 0} \frac{f_{x}(0, y)}{x}=\lim _{y \rightarrow 0} \frac{y\left(0^{4}-y^{4}-4\left(0^{2} y^{2}\right)\right)}{\left(0^{2}+y^{2}\right)^{2} y}=\lim _{y \rightarrow 0}-1=-1 .
\end{gathered}
$$

The mixed partial derivatives $f_{y x}(0,0)$ and $f_{x y}(0,0)$ of f at $(0,0)$ are different
The reason is that they are both not continuous in a neighborhood of $(0,0)$:

$$
f_{y x}(x, y)=\frac{\partial}{\partial x}\left(f_{y}\right)(x, y)=\frac{\left(x^{2}-y^{2}\right)\left(x^{4}+10 x^{2} y^{2}+y^{4}\right)}{\left(x^{2}+y^{2}\right)^{3}}=\frac{\partial}{\partial y}\left(f_{x}\right)(x, y)=f_{x y}(x, y)
$$

The limits of both $f_{y x}$ and $f_{x y}$ DNE as $(x, y) \rightarrow(0,0)$. If $x=0$, they should be -1 , but if $y=0$, they should be 1 .

Notice that $f_{x y}(x, y)=f_{y x}(x, y)$ away from the origin. Indeed, all the derivatives of f are continuous there.

