MAJOR FACTS ABOUT LIMITS AND CONTINUITY

- FACT 1. (Uniqueness of limits) If a limit exists, it is unique: If $\mathbf{F} : X \subset \mathbb{R}^n \to \mathbb{R}^m$, $\lim_{\mathbf{x} \to \mathbf{a}} \mathbf{F}(\mathbf{x}) = \mathbf{L}$, and $\lim_{\mathbf{x} \to \mathbf{a}} \mathbf{F}(\mathbf{x}) = \mathbf{M}$, <u>then</u> $\mathbf{L} = \mathbf{M}$.
- FACT 2. (Algebraic properties of limits) Let $\mathbf{F}, \mathbf{G} : X \subset \mathbb{R}^n \to \mathbb{R}^m$ and $f, g : X \subset \mathbb{R}^n \to \mathbb{R}$. Let also $k \in \mathbb{R}$.
 - $1. \ \mathrm{If} \ \lim_{\mathbf{x}\to\mathbf{a}} \mathbf{F}(\mathbf{x}) = \mathbf{L} \ \mathrm{and} \ \lim_{\mathbf{x}\to\mathbf{a}} \mathbf{G}(\mathbf{x}) = \mathbf{M}, \ \ \underline{\mathbf{then}} \ \ \lim_{\mathbf{x}\to\mathbf{a}} (\mathbf{F}+\mathbf{G})(\mathbf{x}) = \mathbf{L} + \mathbf{M}.$
 - 2. If $\lim_{\mathbf{x}\to\mathbf{a}}\mathbf{F}(\mathbf{x}) = \mathbf{L}$, then $\lim_{\mathbf{x}\to\mathbf{a}}k\mathbf{F}(\mathbf{x}) = k\mathbf{L}$.
 - **3.** If $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = L$ and $\lim_{\mathbf{x}\to\mathbf{a}} g(\mathbf{x}) = M$, <u>then</u> $\lim_{\mathbf{x}\to\mathbf{a}} (fg)(\mathbf{x}) = LM$.
 - 4. If $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = L$, $g(\mathbf{x}) \neq 0$ for $\mathbf{x} \in X$ and $\lim_{\mathbf{x}\to\mathbf{a}} g(\mathbf{x}) = M \neq 0$, then $\lim_{\mathbf{x}\to\mathbf{a}} (f/g)(\mathbf{x}) = L/M$.
- FACT 3. Let $\mathbf{F} : X \subset \mathbb{R}^n \to \mathbb{R}^m$. Then $\lim_{\mathbf{x} \to \mathbf{a}} \mathbf{F}(\mathbf{x}) = \mathbf{L}$ <u>if and only if</u> $\lim_{\mathbf{x} \to \mathbf{a}} F_i(\mathbf{x}) = L_i$ for all $i = 1, 2, \ldots, m$, <u>where</u> $\mathbf{F} = (F_1, F_2, \ldots, F_m)$ and $\mathbf{L} = (L_1, L_2, \ldots, L_m)$.
- FACT 4. Let $\mathbf{F}, \mathbf{G} : X \subset \mathbb{R}^n \to \mathbb{R}^m$ and $f, g : X \subset \mathbb{R}^n \to \mathbb{R}$. Let also $k \in \mathbb{R}$.
 - **1.** If **F** and **G** are continuous at $\mathbf{a} \in X$, <u>then</u> $\mathbf{F} + \mathbf{G}$ is continuous at **a**.
 - **2.** If **F** is continuous at $\mathbf{a} \in X$, <u>then</u> $k\mathbf{F}$ is continuous at **a**.
 - **3.** If f and g are continuous at $\mathbf{a} \in X$, <u>then</u> fg is continuous at \mathbf{a} .
 - **4.** If f and g are continuous at $\mathbf{a} \in X$ and $g \neq 0$, <u>then</u> f/g is continuous at \mathbf{a} .
 - 5. $\mathbf{F}: X \subset \mathbb{R}^n \to \mathbb{R}^m$ is continuous at $\mathbf{a} \in X$ <u>if and only if</u> all $F_i: X \subset \mathbb{R}^n \to \mathbb{R}$ are continuous at \mathbf{a} , <u>where</u> $\mathbf{F} = (F_1, F_2, \dots, F_m)$.
- FACT 5. (Composition of continuous functions) If $\mathbf{F} : X \subset \mathbb{R}^n \to \mathbb{R}^m$ and $\mathbf{G} : Y \subset \mathbb{R}^m \to \mathbb{R}^p$ are continuous and $\operatorname{Range}(\mathbf{F}) \subset Y$, <u>then</u> $\mathbf{G} \circ \mathbf{F} : X \subset \mathbb{R}^n \to \mathbb{R}^p$ is also continuous.

MAJOR FACTS ABOUT DERIVATIVES

- FACT 1. If $\mathbf{F}: X \subset \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $\mathbf{a} \in X$, <u>then</u> it is continuous at \mathbf{a} .
- FACT 2. Let $\mathbf{F}: X \subset \mathbb{R}^n \to \mathbb{R}^m$ such that all $\frac{\partial F_i}{\partial x_j}$ exist and are continuous in a neighborhood of $\mathbf{a} \in X$. Then **F** is differentiable at **a**.
- FACT 3. $\mathbf{F}: X \subset \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $\mathbf{a} \in X$ <u>if and only if</u> all $F_i: X \subset \mathbb{R}^n \to \mathbb{R}$ are differentiable at \mathbf{a} , <u>where</u> $\mathbf{F} = (F_1, F_2, \dots, F_m)$.
- FACT 4. (Linearity of the derivative) Let $\mathbf{F}, \mathbf{G} : X \subset \mathbb{R}^n \to \mathbb{R}^m$ be differentiable at $\mathbf{a} \in X$ and $k \in \mathbb{R}$. Then
 - 1. $\mathbf{F} + \mathbf{G}$ is differentiable at \mathbf{a} and $D(\mathbf{F} + \mathbf{G})(\mathbf{a}) = D\mathbf{F}(\mathbf{a}) + D\mathbf{G}(\mathbf{a})$.
 - **2.** $k\mathbf{F}$ is differentiable at \mathbf{a} and $D(k\mathbf{F})(\mathbf{a}) = kD\mathbf{F}(\mathbf{a})$.
- FACT 5. Let $f, g: X \subset \mathbb{R}^n \to \mathbb{R}$ be differentiable at $\mathbf{a} \in X$. <u>Then</u>
 - 1. fg is differentiable at **a** and $D(fg)(\mathbf{a}) = g(\mathbf{a})Df(\mathbf{a}) + f(\mathbf{a})Dg(\mathbf{a})$.
 - 2. <u>if</u> $g \neq 0$, f/g is differentiable at **a** and $D(f/g)(\mathbf{a}) = \frac{g(\mathbf{a})Df(\mathbf{a}) f(\mathbf{a})Dg(\mathbf{a})}{g(\mathbf{a})^2}$.
- FACT 6. (The chain rule) If $\mathbf{F} : X \subset \mathbb{R}^n \to \mathbb{R}^m$ and $\mathbf{G} : Y \subset \mathbb{R}^m \to \mathbb{R}^p$ are differentiable at \mathbf{a} and $\mathbf{b} = \mathbf{F}(\mathbf{a})$, respectively, and $\operatorname{Range}(\mathbf{F}) \subset Y$, <u>then</u> $\mathbf{G} \circ \mathbf{F} : X \subset \mathbb{R}^n \to \mathbb{R}^p$ is also differentiable at \mathbf{a} and $D(\mathbf{G} \circ \mathbf{F})(\mathbf{a}) = D\mathbf{G}(\mathbf{b})D\mathbf{F}(\mathbf{a})$.