Green's Theorem and its Reformulations

Let D be a closed bounded region in \mathbb{R}^{2} such that its boundary ∂D consists of finitely many simple closed curves that are oriented in such a way that D in on the left as one traverses ∂D. Let $\mathbf{F}(x, y)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}$ be a vector field of class C^{1}.

1. (Green's Theorem) $\oint_{\partial D} M d x+N d y=\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A$.
2. (Vector reformulation) $\oint_{\partial D} \mathbf{F} \cdot d \mathbf{s}=\iint_{D}(\nabla \times \mathbf{F}) \cdot \mathbf{k} d A$.
3. (Divergence Theorem in the plane) If \mathbf{n} is the outward unit normal vector to $D, \underline{\text { then }} \oint_{\partial D} \mathbf{F} \cdot \mathbf{n} d s=\iint_{D} \nabla \cdot \mathbf{F} d A$.
