MAJOR FACTS ABOUT DERIVATIVES

- FACT 1. If $\mathbf{F} : X \subset \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $\mathbf{a} \in X$, <u>then</u> it is continuous at \mathbf{a} . FACT 2. Let $\mathbf{F} : X \subset \mathbb{R}^n \to \mathbb{R}^m$ such that all $\frac{\partial F_i}{\partial x_j}$ exist and are continuous in a neighborhood of $\mathbf{a} \in X$. <u>Then</u> \mathbf{F} is differentiable at \mathbf{a} .
- FACT 3. $\mathbf{F}: X \subset \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $\mathbf{a} \in X$ if and only if all $F_i: X \subset \mathbb{R}^n \to \mathbb{R}$ are differentiable at \mathbf{a} , where $\mathbf{F} = (F_1, F_2, \dots, F_m)$.
- FACT 4. (Linearity of the derivative)

Let $\mathbf{F}, \mathbf{G}: X \subset \mathbb{R}^n \to \mathbb{R}^m$ be differentiable at $\mathbf{a} \in X$ and $k \in \mathbb{R}$. <u>Then</u>

- 1. $\mathbf{F} + \mathbf{G}$ is differentiable at \mathbf{a} and $D(\mathbf{F} + \mathbf{G})(\mathbf{a}) = D\mathbf{F}(\mathbf{a}) + D\mathbf{G}(\mathbf{a})$.
- **2.** $k\mathbf{F}$ is differentiable at \mathbf{a} and $D(k\mathbf{F})(\mathbf{a}) = kD\mathbf{F}(\mathbf{a})$.
- FACT 5. Let $f, g: X \subset \mathbb{R}^n \to \mathbb{R}$ be differentiable at $\mathbf{a} \in X$. Then
 - 1. fg is differentiable at **a** and $D(fg)(\mathbf{a}) = g(\mathbf{a})Df(\mathbf{a}) + f(\mathbf{a})Dg(\mathbf{a})$.
 - 2. <u>if</u> $g \neq 0$, f/g is differentiable at **a** and $D(f/g)(\mathbf{a}) = \frac{g(\mathbf{a})Df(\mathbf{a}) f(\mathbf{a})Dg(\mathbf{a})}{g(\mathbf{a})^2}$.
- FACT 6. (The chain rule) If $\mathbf{F} : X \subset \mathbb{R}^n \to \mathbb{R}^m$ and $\mathbf{G} : Y \subset \mathbb{R}^m \to \mathbb{R}^p$ are differentiable at \mathbf{a} and $\mathbf{b} = \mathbf{F}(\mathbf{a})$, respectively, and $\operatorname{Range}(\mathbf{F}) \subset Y$, then $\mathbf{G} \circ \mathbf{F} : X \subset \mathbb{R}^n \to \mathbb{R}^p$ is also differentiable at \mathbf{a} and $D(\mathbf{G} \circ \mathbf{F})(\mathbf{a}) = D\mathbf{G}(\mathbf{b})D\mathbf{F}(\mathbf{a})$.