SECTION 2.5

THE GRADIENT VECTOR FIELD

$$
\begin{aligned}
& \text { You are climbing a hill whose shape is given by the equation } \\
& \quad z=1000-0.01 \times \wedge 2-0.02 y^{\wedge} 2 \\
& \text { and you are standing at the point with coordinates }(60,100,764) \text {. In } \\
& \text { which direction should you proceed initially in order to reach the top } \\
& \text { of the hill fastest? Draw the level curves and the gradient. }
\end{aligned}
$$

Solution. The graph below contains the level curves $c=0,200,400,600,764,999$:

The next one represents also the gradient:

The picture shows clearly that the gradient is perpendicular to the level curves. The answer to the given problem comes now recalling another property that the gradient satisfies: it indicates the direction of maximum change for the function. Consequently on should follow the gradient to get fastest to the top of the hill.

```
** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **
EXAMPLE (to play with!) For the function:
    f(x,y) = x*y-0.5* (x^3-0.5* y^ 3
the graph and some level curves are given in the
    pictures below. Draw the gradient vector field.
```


