Math 123 Homework Assignment \#2

Due Friday, April 22

Part I:

1. Suppose that A is a C^{*}-algebra.
(a) Suppose that $e \in A$ satisfies $x e=x$ for all $x \in A$. Show that $e=e^{*}$ and that $\|e\|=1$. Conclude that e is a unit for A.
(b) Show that for any $x \in A,\|x\|=\sup _{\|y\| \leq 1}\|x y\|$. (Do not assume that A has an approximate identity.)
2. Suppose that A is a Banach algebra with an involution $x \mapsto x^{*}$ that satisfies $\|x\|^{2} \leq$ $\left\|x^{*} x\right\|$. Then show that A is a Banach $*$-algebra (i.e., $\left\|x^{*}\right\|=\|x\|$). In fact, show that A is a C^{*}-algebra.
3. Let I be a set and suppose that for each $i \in I, A_{i}$ is a C^{*}-algebra. Let $\bigoplus_{i \in I} A_{i}$ be the subset of the direct product $\prod_{i \in I} A_{i}$ consisting of those $a \in \prod_{i \in I} A_{i}$ such that $\|a\|:=$ $\sup _{i \in I}\left\|a_{i}\right\|<\infty$. Show that $\left(\bigoplus_{i \in I} A_{i},\|\cdot\|\right)$ is a C^{*}-algebra with respect to the usual pointwise operations:

$$
\begin{aligned}
(a+\lambda b)(i) & :=a(i)+\lambda b(i) \\
(a b)(i) & :=a(i) b(i) \\
a^{*}(i) & :=a(i)^{*} .
\end{aligned}
$$

We call $\bigoplus_{i \in I} A_{i}$ the direct sum of the $\left\{A_{i}\right\}_{i \in I}$.
4. Let A^{1} be the vector space direct sum $A \oplus \mathbf{C}$ with the $*$-algebra structure given by

$$
\begin{aligned}
(a, \lambda)(b, \mu) & :=(a b+\lambda b+\mu a, \lambda \mu) \\
(a, \lambda)^{*} & :=\left(a^{*}, \bar{\lambda}\right) .
\end{aligned}
$$

Show that there is a norm on A^{1} making it into a C^{*}-algebra such that the natural embedding of A into A^{1} is isometric. (Hint: If $1 \in A$, then show that $(a, \lambda) \mapsto\left(a+\lambda 1_{A}, \lambda\right)$ is a ${ }^{*-}$ isomorphism of A^{1} onto the C^{*}-algebra direct sum of A and C. If $1 \notin A$, then for each $a \in A$, let L_{a} be the linear operator on A defined by left-multiplication by $a: L_{a}(x)=a x$. Then show that the collection B of operators on A of the form $\lambda I+L_{a}$ is a C^{*}-algebra with respect to the operator norm, and that $a \mapsto L_{a}$ is an isometric $*$-isomorphism.)
5. In this question, ideal always means 'closed two-sided ideal.'
(a) Suppose that I and J are ideals in a C^{*}-algebra A. Show that $I J —$ defined to be the closed linear span of products from I and J - equals $I \bigcap J$.
(b) Suppose that J is an ideal in a C^{*}-algebra A, and that I is an ideal in J. Show that I is an ideal in A.
6. Suppose that a and b are elements in a C^{*}-algebra A and that $0 \leq a \leq b$. Show that $\|a\| \leq\|b\|$. What happens if we drop the assumption that $0 \leq a$? (Hint: use Lemma Z.)

Part II:

7. Suppose that A is a unital C^{*}-algebra and that $f: \mathbf{R} \rightarrow \mathbf{C}$ is continuous. Show that the map $x \mapsto f(x)$ is a continuous map from $A_{\text {s.a. }}=\left\{x \in A: x=x^{*}\right\}$ to A.
8. Prove Corollary AC: Show that every separable C^{*}-algebra contains a sequence which is an approximate identity. (Recall that we showed in the proof of Theorem AB that if $x \in A_{\text {s.a. }}$, and if $x \in\left\{x_{1}, \ldots, x_{n}\right\}=\lambda$, then $\left\|x-x e_{\lambda}\right\|^{2}<1 / 4 n$.)
9. Suppose that $\pi: A \rightarrow B(\mathcal{H})$ is a representation. Prove that the following are equivalent.
(a) π has no non-trivial closed invariant subspaces; that is, π is irreducible.
(b) The commutant $\pi(A)^{\prime}:=\{T \in B(\mathcal{H}): T \pi(a)=\pi(a) T$ for all $a \in A\}$ consists solely of scalar multiples of the identity; that is $\pi(A)^{\prime}=\mathbf{C} I$.
(c) No non-trivial projection in $B(\mathcal{H})$ commutes with every operator in $\pi(A)$.
(d) Every vector in \mathcal{H} is cyclic for π.
(Suggestions. Observe that $\pi(A)^{\prime}$ is a C^{*}-algebra. If $A \in \pi(A)_{\text {s.a. }}^{\prime}$ and $A \neq \alpha I$ for some $\alpha \in \mathbf{C}$, then use the Spectral Theorem to produce nonzero operators $B_{1}, B_{2} \in \pi(A)^{\prime}$ with $B_{1} B_{2}=B_{2} B_{1}=0$. Observe that the closure of the range of B_{1} is a non-trivial invariant subspace for π.)

Part III:

10. As in footnote 1 of problem $\# 8$ on the first assignment, use the maximum modulus theorem to view the disk algebra, $A(D)$, as a Banach subalgebra of $C(\mathbf{T}) .{ }^{1}$ Let $f \in A(D)$ be the identity function: $f(z)=z$ for all $z \in \mathbf{T}$. Show that $\sigma_{C(\mathbf{T})}(f)=\mathbf{T}$, while $\sigma_{A(D)}(f)=\bar{D}$. This shows that, unlike the case of C^{*}-algebras where we have "spectral permanence," we can have $\sigma_{A}(b)$ a proper subset of $\sigma_{B}(b)$ when B is a unital subalgebra of A.
11. Suppose that U is an bounded operator on a complex Hilbert space \mathcal{H}. Show that the following are equivalent.
(a) U is isometric on $\operatorname{ker}(U)^{\perp}$.
(b) $U U^{*} U=U$.
(c) $U U^{*}$ is a projection ${ }^{2}$.
(d) $U^{*} U$ is a projection.

An operator in $B(\mathcal{H})$ satisfying (a), and hence (a)-(d), is called a partial isometry on \mathcal{H}. The reason for this terminology ought to be clear from part (a).

Conclude that if U is a partial isometry, then $U U^{*}$ is the projection on the (necessarily closed) range of U, that $U^{*} U$ is the projection on the $\operatorname{ker}(U)^{\perp}$, and that U^{*} is also a partial isometry.
(Hint: Replacing U by U^{*}, we see that $(\mathrm{b}) \Longleftrightarrow(\mathrm{c})$ implies $(\mathrm{b}) \Longleftrightarrow(\mathrm{c}) \Longleftrightarrow(\mathrm{d})$. Then use (b)-(d) to prove (a). To prove $(\mathrm{c}) \Longrightarrow(\mathrm{b})$, consider $\left(U U^{*} U-U\right)\left(U U^{*} U-U\right)^{*}$.)

[^0]
[^0]: ${ }^{1}$ Although it is not relevant to the problem, we can put an involution on $C(\mathbf{T}), f^{*}(z)=\overline{f(\bar{z})}$, making $A(D)$ a Banach *-subalgebra of $C(T)$. You can then check that neither $C(\mathbf{T})$ nor $A(D)$ is a C^{*}-algebra with respect to this involution.
 ${ }^{2} \mathrm{~A}$ a bounded operator P on a complex Hilbert space \mathcal{H} is called a projection if $P=P^{*}=P^{2}$. The term orthogonal projection or self-adjoint projection is, perhaps, more accurate. Note that $\mathcal{M}=P(\mathcal{H})$ is a closed subspace of \mathcal{H} and that P is the usual projection with respect to the direct sum decomposition $\mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}$. However, since we are only interested in these sorts of projections, we will settle for the undecorated term "projection."

