Math 123 Homework Assignment #1 Due Friday, April 8th.

Part I:

1. Suppose that X is a normed vector space. Then X is a Banach space (that is, X is complete) if and only if every absolutely convergent series in X is convergent.

2. Let X be a normed vector space and suppose that S and T are bounded linear operators on X. Show that $||ST|| \leq ||S|| ||T||$.

3. Let X be a locally compact Hausdorff space. Show that $C_0(X)$ is a closed subalgebra of $C^b(X)$.

4. Let A be a unital Banach algebra. Show that $x \mapsto x^{-1}$ is continuous from G(A) to G(A). (Hint: $(a-h)^{-1} - a^{-1} = ((1-a^{-1}h)^{-1} - 1)a^{-1}$.)

Part II:

5. Suppose that X is a compact Hausdorff space. If E is a closed subset of X, define I(E) to be the ideal in C(X) of functions which vanish on E.

- (a) Let J be a closed ideal in C(X) and let $E = \{x \in X : f(x) = 0 \text{ for all } f \in J\}$. Prove that if U is an open neighborhood of E in X, then there is a $f \in J$ such that f(x) = 1 for all x in the compact set $X \setminus U$.
- (b) Conclude that J = I(E) in part (a), and hence, conclude that *every closed* ideal in C(X) has the form I(E) for some closed subset E of X.

6. Suppose that X is a (non-compact) locally compact Hausdorff space. Let X^+ be the *one-point compactification* of X (also called the Alexandroff compactification: see [Kelly; Theorem 5.21] or [Folland, Proposition 4.36]). Recall that $X^+ = X \cup \{\infty\}$ with $U \subseteq X^+$ open if and only if either U is an open subset of X or $X^+ \setminus U$ is a *compact* subset of X.

(a) Show that $f \in C(X)$ belongs to $C_0(X)$ if and only if the extension

$$\tilde{f}(\tilde{x}) = \begin{cases} f(\tilde{x}) & \text{if } \tilde{x} \in X, \text{ and} \\ 0 & \text{if } \tilde{x} = \infty. \end{cases}$$

is continuous on X^+ .

- (b) Conclude that $C_0(X)$ can be identified with the maximal ideal of $C(X^+)$ consisting of functions which 'vanish at ∞ .'
- 7. Use the above to establish the following ideal theorem for $C_0(X)$.

Theorem: Suppose that X is a locally compact Hausdorff space. Then every closed ideal J in $C_0(X)$ is of the form

$$J = \{ f \in C_0(X) : f(x) = 0 \text{ for all } x \in E \}$$

for some closed subset E of X.

Part III:

8. Assume you remember enough measure theory to show that if $f, g \in L^1([0,1])$, then

$$f * g(t) = \int_0^t f(t - s)g(s) \, ds$$
(3)

exists for almost all $t \in [0, 1]$, and defines an element of $L^1([0, 1])$. Let A be the algebra consisting of the Banach space $L^1([0, 1])$ with multiplication defined by (3).

(a) Conclude that A is a commutative Banach algebra: that is, show that f * g = g * f, and that $||f * g||_1 \le ||f||_1 ||g||_1$.

(b) Let f_0 be the constant function $f_0(t) = 1$ for all $t \in [0, 1]$. Show that

$$f_0^n(t) := f_0 * \dots * f_0(t) = t^{n-1}/(n-1)!, \tag{4}$$

and hence,

$$\|f_0^n\|_1 = \frac{1}{n!}.$$
(5)

- (c) Show that (4) implies that f_0 generates A as a Banach algebra: that is, alg(f) is norm dense. Conclude from (5) that the spectral radius $\rho(f)$ is zero for all $f \in A$.
- (d) Conclude that A has no nonzero complex homomorphisms.

9. Here we want to give an example of a unital commutative Banach algebra A where the Gelfand transform induces and injective isometric map of A onto a proper subalgebra of $C(\Delta)$. For A, we want to take the *disk algebra*. There are a couple of ways that the disk algebra arises in the standard texts, but the most convenient for us is to proceed as follows. Let $D = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk. We'll naturally write \overline{D} for its closure $\{z \in \mathbb{C} : |z| \leq 1\}$, and \mathbb{T} for its boundary. Then A will be the subalgebra of $C(\overline{D})$ consisting of functions which are holomorphic on D. Using Morera's Theorem, it is not hard to see that A is closed in $C(\overline{D})$, and therefore a unital commutative Banach algebra.⁵ Notice that for each $z \in \overline{D}$, we obtain $\varphi_z \in \Delta$ by $\varphi_z(f) := f(z)$. We'll get the example we want by showing that $z \mapsto \varphi_z$ is a homeomorphism Ψ of \overline{D} onto Δ . For convenience, let $p_n \in A$ be given by $p_n(z) = z^n$ for $n = 0, 1, 2, \ldots$, and let \mathcal{P} be the subalgebra of polynomials spanned by the p_n .

- (a) First observe that Ψ is injective. (Consider p_1 .)
- (b) If $f \in A$ and 0 < r < 1, then let $f_r(z) := f(rz)$. Show that $f_r \to f$ in A as $r \to 1$.
- (c) Conclude that \mathcal{P} is dense in A. (Hint: show that $f_r \in \overline{\mathcal{P}}$ for all 0 < r < 1.)
- (d) Now show that Ψ is surjective. (Hint: suppose that $h \in \Delta$. Then show that $h = \varphi_z$ where $z = h(p_1)$.)
- (e) Show that Ψ is a homeomorphism. (Hint: Ψ is clearly continuous and both \overline{D} and Δ are compact and Hausdorff.)

⁵The maximum modulus principal implies that the map sending $f \in C(\overline{D})$ to its restriction to \mathbb{T} is an isometric isomorphism of A onto a closed subalgebra A(D) in $C(\mathbb{T})$. Of course, our analysis applies equally well to A(D).

(f) Observe that if we use the above to identify Δ and \overline{D} , then the Gelfand transform is the identify on A, and A is a proper subalgebra of $C(\overline{D})$.

10. In this problem, we want to prove an old result to due Wiener about functions with absolutely converent Fourier series using the machinery of Gelfand theory. Recall that if $\varphi \in C(\mathbb{T})$, then the *Fourier coefficients* of φ are given by⁶

$$\check{\varphi}(n) := \frac{1}{2\pi} \int_{-\pi}^{\pi} \varphi(e^{it}) e^{-int} dt.$$

In some cases — for example if φ has two continuous derivatives — the Fourier coefficients are *absolutely convergent* in the sense that $n \mapsto \check{\varphi}(n)$ defines an element of $\ell^1(\mathbb{Z})$.⁷

We aim to prove the following:

Theorem: (Wiener) Suppose the $\varphi \in C(\mathbb{T})$ never vanishes and has an absolutely convergent Fourier series. Then $\psi := 1/\varphi$ also has an absolutely convergent Fourier series.

I suggest the following strategy.

(a) If f and g are in $\ell^1(\mathbb{Z})$, then their convolution, f * g is defined by

$$f * g(n) = \sum_{m = -\infty}^{\infty} f(m)g(n - m).$$

Show that $f * g \in \ell^1(\mathbb{Z})$ (so that in particular, f * g(n) is defined for all n), and that convolution makes $\ell^1(\mathbb{Z})$ into a unital, commutative Banach algebra. (Here, $1_{\ell^1(\mathbb{Z})} = \mathbb{1}_{\{0\}}^{.8}$.)

(b) Let $\Delta = \Delta(\ell^1(\mathbb{Z}))$ be the maximal ideal space of $\ell^1(\mathbb{Z})$ equipped with its compact, Hausdorff Gelfand topology. If $z \in \mathbb{T}$, then define $h_z : A \to \mathbb{C}$ by

$$h_z(f) = \sum_{n = -\infty}^{\infty} f(n) z^n$$

Show that $h_z \in \Delta$.

⁶I've used $\check{\varphi}$ in place of the traditional $\hat{\varphi}$ to distinguish it from the (other) Gelfand transform to be used in the problem.

⁷Recall that $\ell^1(\mathbb{Z}) = L^1(\mathbb{Z}, \nu)$, where ν is counting measure, is the set of functions $f : \mathbb{Z} \to \mathbb{C}$ such that $\lim_{N \to \infty} \sum_{n=-N}^{n=N} |f(n)| < \infty$.

⁸If S is a subset of X, I use $\mathbb{1}_S$ for the characteristic function of S, which takes the value 1 on S, and 0 otherwise.

- (c) Let $w = \mathbb{1}_1 \in \ell^1(\mathbb{Z})$. If $h \in \Delta$, then show that $h = h_z$ where z = h(w). (Hint: If $f \in \ell^1(\mathbb{Z})$, then $f = \sum_{n=-\infty}^{\infty} f(n)w^n$ in norm in $\ell^1(\mathbb{Z})$, where for example, $w^2 = w * w = \mathbb{1}_2$ and $w^{-1} = \mathbb{1}_{-1}$.)
- (d) Show that $z \mapsto h_z$ is a homeomorphism Φ of \mathbb{T} onto Δ . (Hint: Since both \mathbb{T} and Δ are compact Hausdorff sets, it suffices to see that Φ is a continuous bijection. To show that Φ is continuous, observe that functions of the form $\sum_{n=-N}^{n=N} f(n)w^n$ are dense in $\ell^1(\mathbb{Z})$.)
- (e) Since we can identify \mathbb{T} with Δ , if $f \in \ell^1(\mathbb{Z})$, we will view the Gelfand transform of f as a continuous function on \mathbb{T} . (So that we write $\hat{f}(z)$ in place of $\hat{f}(h_z)$.) Show that if $\varphi = \hat{f}$ for some $f \in A$, then $\check{\varphi} = f$.
- (f) Conclude that the image \mathfrak{A} of $\ell^1(\mathbb{Z})$ in $C(\mathbb{T})$ under the Gelfand transform is exactly the set of φ in $C(\mathbb{T})$ whose Fourier coefficients are absolutely convergent. (That is, \mathfrak{A} is the collection of $\varphi \in C(\mathbb{T})$ such that $n \mapsto \check{\varphi}(n)$ is in $\ell^1(\mathbb{Z})$.)
- (g) Now prove Wiener's Theorem as stated above. (Hint: More or less by assumption, $\varphi = \hat{f}$ for some f in $\ell^1(\mathbb{Z})$. Show that f must be invertible in $\ell^1(\mathbb{Z})$ and consider the Gelfand transform of the inverse of f.)