
Math 123 Homework Assignment #1

Due Friday, April 8th.

Part I:

1. Suppose that X is a normed vector space. Then X is a Banach space (that is, X is
complete) if and only if every absolutely convergent series in X is convergent.

2. Let X be a normed vector space and suppose that S and T are bounded linear operators
on X. Show that ‖ST‖ ≤ ‖S‖‖T‖.

3. Let X be a locally compact Hausdorff space. Show that C0(X) is a closed subalgebra of
Cb(X).

4. Let A be a unital Banach algebra. Show that x 7→ x−1 is continuous from G(A) to G(A).
(Hint: (a− h)−1 − a−1 = ((1− a−1h)−1 − 1)a−1.)

Part II:

5. Suppose that X is a compact Hausdorff space. If E is a closed subset of X, define I(E)
to be the ideal in C(X) of functions which vanish on E.

(a) Let J be a closed ideal in C(X) and let E = {x ∈ X : f(x) = 0 for all f ∈ J }. Prove
that if U is an open neighborhood of E in X, then there is a f ∈ J such that f(x) = 1
for all x in the compact set X \ U .

(b) Conclude that J = I(E) in part (a), and hence, conclude that every closed ideal in
C(X) has the form I(E) for some closed subset E of X.
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6. Suppose that X is a (non-compact) locally compact Hausdorff space. Let X+ be the
one-point compactification of X (also called the Alexandroff compactification: see [Kelly;
Theorem 5.21] or [Folland, Proposition 4.36]). Recall that X+ = X ∪ {∞} with U ⊆ X+

open if and only if either U is an open subset of X or X+ \ U is a compact subset of X.

(a) Show that f ∈ C(X) belongs to C0(X) if and only if the extension

f̃(x̃) =

{

f(x̃) if x̃ ∈ X, and

0 if x̃ = ∞.

is continuous on X+.

(b) Conclude that C0(X) can be identified with the maximal ideal of C(X+) consisting of
functions which ‘vanish at ∞.’

7. Use the above to establish the following ideal theorem for C0(X).

Theorem: Suppose that X is a locally compact Hausdorff space. Then every closed ideal
J in C0(X) is of the form

J = { f ∈ C0(X) : f(x) = 0 for all x ∈ E }

for some closed subset E of X.

Part III:

8. Assume you remember enough measure theory to show that if f, g ∈ L1
(

[0, 1]
)

, then

f ∗ g(t) =

∫

t

0

f(t− s)g(s) ds (3)

exists for almost all t ∈ [0, 1], and defines an element of L1
(

[0, 1]
)

. Let A be the algebra
consisting of the Banach space L1

(

[0, 1]
)

with multiplication defined by (3).

(a) Conclude that A is a commutative Banach algebra: that is, show that f ∗ g = g ∗ f ,
and that ‖f ∗ g‖1 ≤ ‖f‖1 ‖g‖1.

–2–



(b) Let f0 be the constant function f0(t) = 1 for all t ∈ [0, 1]. Show that

fn

0 (t) := f0 ∗ · · · ∗ f0(t) = tn−1/(n− 1)!, (4)

and hence,

‖fn

0 ‖1 =
1

n!
. (5)

(c) Show that (4) implies that f0 generates A as a Banach algebra: that is, alg(f) is norm
dense. Conclude from (5) that the spectral radius ρ(f) is zero for all f ∈ A.

(d) Conclude that A has no nonzero complex homomorphisms.

9. Here we want to give an example of a unital commutative Banach algebra A where the
Gelfand transform induces and injective isometric map of A onto a proper subalgebra of
C(∆). For A, we want to take the disk algebra. There are a couple of ways that the disk
algebra arises in the standard texts, but the most convenient for us is to proceed as follows.
Let D = { z ∈ C : |z| < 1 } be the open unit disk. We’ll naturally write D for its closure
{ z ∈ C : |z| ≤ 1 }, and T for its boundary. Then A will be the subalgebra of C(D) consisting
of functions which are holomorphic on D. Using Morera’s Theorem, it is not hard to see
that A is closed in C(D), and therefore a unital commutative Banach algebra.5 Notice that
for each z ∈ D, we obtain ϕz ∈ ∆ by ϕz(f) := f(z). We’ll get the example we want by
showing that z 7→ ϕz is a homeomorphism Ψ of D onto ∆. For convenience, let pn ∈ A be
given by pn(z) = zn for n = 0, 1, 2, . . . , and let P be the subalgebra of polynomials spanned
by the pn.

(a) First observe that Ψ is injective. (Consider p1.)

(b) If f ∈ A and 0 < r < 1, then let fr(z) := f(rz). Show that fr → f in A as r → 1.

(c) Conclude that P is dense in A. (Hint: show that fr ∈ P for all 0 < r < 1.)

(d) Now show that Ψ is surjective. (Hint: suppose that h ∈ ∆. Then show that h = ϕz

where z = h(p1).)

(e) Show that Ψ is a homeomorphism. (Hint: Ψ is clearly continuous and both D and ∆
are compact and Hausdorff.)

5The maximum modulus principal implies that the map sending f ∈ C(D) to its restriction to T is an
isometric isomorphism of A onto a closed subalgebra A(D) in C(T). Of course, our analysis applies equally
well to A(D).
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(f) Observe that if we use the above to identify ∆ and D, then the Gelfand transform is
the identify on A, and A is a proper subalgebra of C(D).

10. In this problem, we want to prove an old result to due Wiener about functions with
absolutely converent Fourier series using the machinery of Gelfand theory. Recall that if
ϕ ∈ C(T), then the Fourier coefficients of ϕ are given by6

ϕ̌(n) :=
1

2π

∫

π

−π

ϕ(eit)e−int dt.

In some cases — for example if ϕ has two continuous derivatives — the Fourier coefficients
are absolutely convergent in the sense that n 7→ ϕ̌(n) defines an element of ℓ1(Z).7

We aim to prove the following:

Theorem: (Wiener) Suppose the ϕ ∈ C(T) never vanishes and has an absolutely convergent

Fourier series. Then ψ := 1/ϕ also has an absolutely convergent Fourier series.

I suggest the following strategy.

(a) If f and g are in ℓ1(Z), then their convolution, f ∗ g is defined by

f ∗ g(n) =
∞
∑

m=−∞

f(m)g(n−m).

Show that f ∗ g ∈ ℓ1(Z) (so that in particular, f ∗ g(n) is defined for all n), and that
convolution makes ℓ1(Z) into a unital, commutative Banach algebra. (Here, 1ℓ1(Z) =
1{0}.

8)

(b) Let ∆ = ∆(ℓ1(Z)) be the maximal ideal space of ℓ1(Z) equipped with its compact,
Hausdorff Gelfand topology. If z ∈ T, then define hz : A→ C by

hz(f) =
∞
∑

n=−∞

f(n)zn.

Show that hz ∈ ∆.

6I’ve used ϕ̌ in place of the traditional ϕ̂ to distinguish it from the (other) Gelfand transform to be used
in the problem.

7Recall that ℓ1(Z) = L1(Z, ν), where ν is counting measure, is the set of functions f : Z → C such that

limN→∞

∑n=N

n=−N
|f(n)| < ∞.

8If S is a subset of X, I use 1S for the characteristic function of S, which takes the value 1 on S, and 0
otherwise.
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(c) Let w = 11 ∈ ℓ1(Z). If h ∈ ∆, then show that h = hz where z = h(w). (Hint: If f ∈
ℓ1(Z), then f =

∑∞
n=−∞ f(n)wn in norm in ℓ1(Z), where for example, w2 = w ∗w = 12

and w−1 = 1−1.)

(d) Show that z 7→ hz is a homeomorphism Φ of T onto ∆. (Hint: Since both T and ∆
are compact Hausdorff sets, it suffices to see that Φ is a continuous bijection. To show
that Φ is continuous, observe that functions of the form

∑

n=N

n=−N
f(n)wn are dense in

ℓ1(Z).)

(e) Since we can identify T with ∆, if f ∈ ℓ1(Z), we will view the Gelfand transform of f
as a continuous function on T. (So that we write f̂(z) in place of f̂(hz).) Show that if
ϕ = f̂ for some f ∈ A, then ϕ̌ = f .

(f) Conclude that the image A of ℓ1(Z) in C(T) under the Gelfand transform is exactly
the set of ϕ in C(T) whose Fourier coefficients are absolutely convergent. (That is, A
is the collection of ϕ ∈ C(T) such that n 7→ ϕ̌(n) is in ℓ1(Z).)

(g) Now prove Wiener’s Theorem as stated above. (Hint: More or less by assumption,
ϕ = f̂ for some f in ℓ1(Z). Show that f must be invertible in ℓ1(Z) and consider the
Gelfand transform of the inverse of f .)

–5–


