Math 123 Homework Assignment \#4

Due at the end of term (optional)

Part I:

1. Let $\left\{A_{n}, \varphi_{n}\right\}$ be a direct sequence of C^{*}-algebras in which all the connecting maps φ_{n} are injective. Let $\left(A, \varphi^{n}\right)$ be "the" direct limit.
(a) Show that $\varphi^{n}(a)=\varphi^{m}(b)$ if and only if there is a $k \geq \max n, m$ such that $\varphi_{n, k}(a)=$ $\varphi_{m, k}(b)$, and
(b) Show that each φ^{n} is injective.
2. Let A be a C^{*}-algebra. We call $u \in A$ a partial isometry if $u^{*} u$ is a projection. Show that the following are equivalent.
(a) u is a partial isometry.
(b) $u=u u^{*} u$.
(c) $u^{*}=u^{*} u u^{*}$.
(d) $u u^{*}$ is a projection.
(e) u^{*} is a partial isometry.
(Suggestion: for $(\mathrm{b}) \Longrightarrow(\mathrm{a})$, use the C^{*}-norm identity on $\left\|u u^{*} u-u\right\|=\left\|u\left(u^{*} u-1\right)\right\|$.)

Part II:

3. Give the details of the argument sketched in lecture that if A is a finite-dimensional C^{*}-algebra, then $A \cong \bigoplus_{i=1}^{n} M_{n_{i}}$. (Recall that you can use the argument of Corollary BG to conclude that A has a finite-dimensional faithful representation. Then we may as well assume that $A \subset \mathcal{K}(\mathcal{H})=B(\mathcal{H})$. Now apply Theorem AP to the identity representation of A.)
4. Let $T=\left(T_{i j}\right)$ be an operator in $M_{n}(B(\mathcal{H}))$. Show that

$$
\left\|T_{i j}\right\| \leq\left\|\left(T_{i j}\right)\right\| \leq \sum_{i j}\left\|T_{i j}\right\|
$$

5. Let M_{s} be a UHF algebra such which is not a matrix algebra. (This is automatic if $s: \mathbb{Z}^{+} \rightarrow\{2,3, \ldots\}$.) Show that M_{s} is not GCR.
6. Recall the following notations. Let $\overline{\mathbf{n}}=\left(n_{1}, \ldots, n_{k}\right) \in\left(\mathbb{Z}^{+}\right)^{k}$, and $|\overline{\mathbf{n}}|=n_{1}+\cdots n_{k}$. View elements of $M_{\overline{\mathbf{n}}}=M_{n_{1}} \oplus \cdots \oplus M_{n_{k}}$ as block diagonal matrices in $M_{|\overline{\mathbf{n}}|}$. Recall that $M=\left(m_{i j}\right) \in M_{s \times k}(\mathbb{N})$ is called admissible if $\sum_{j=1}^{k} m_{i j} n_{j} \leq r_{i}$ for all $i=1,2, \ldots, s$. We defined $\varphi_{M}: M_{\overline{\mathbf{n}}} \rightarrow M_{\overline{\mathbf{r}}}$ by $\varphi_{M}\left(T_{1} \oplus \cdots \oplus T_{k}\right)=\left(T_{1}^{\prime} \oplus \cdots \oplus T_{s}^{\prime}\right)$ where

$$
T_{i}^{\prime}=m_{i 1} \cdot T_{1} \oplus \cdots \oplus m_{i k} \cdot T_{k} \oplus \mathbf{0}_{d_{i}}
$$

with $d_{i}=r_{i}-\sum_{j=1}^{k} m_{i j} n_{j}$, and $m \cdot T=\underbrace{T \oplus \cdots \oplus T}_{m \text { times }}$.
Prove that if $\varphi: M_{\overline{\mathbf{n}}} \rightarrow M_{\overline{\mathbf{r}}}$ is a $*$-homomorphism, then there is a unitary $u \in M_{\overline{\mathbf{r}}}$ such that $\varphi=\operatorname{Ad} u \circ \varphi_{M}$ for some admissible matrix M.
(Suggestions: (1) View φ as a (possibly degenerate) representation of $M_{\overline{\mathbf{n}}} \subseteq M_{|\overline{\mathbf{n}}|}=B\left(\mathbb{C}^{|\overline{\mathbf{n}}|}\right)$ into $M_{\overline{\mathbf{r}}} \subseteq B\left(\mathbb{C}^{|\overline{\mathbf{r}}|}\right)$. Use Theorem AP to write φ as $\sum_{i} \pi^{i}$, where each π^{i} is an irreducible subrepresentation equivalent to a subrepresentation of id : $M_{\overline{\mathbf{n}}} \rightarrow B\left(\mathbb{C}^{|\overline{\mathbf{n}}|}\right)$. (2) Conclude that $\varphi=\sum_{i=1}^{s} \varphi_{i}$ where each φ_{i} is a $*$-homomorphism of $M_{\overline{\mathbf{n}}}$ into $M_{r_{i}}=B\left(\mathbb{C}^{r_{i}}\right)$. Then use Theorem AP again to see that $\varphi_{i} \cong \bigoplus_{j=1}^{k} m_{i j} \cdot \operatorname{id}_{M_{n_{j}}}$. (3) Now show that there is a $U \in M_{r_{j}}$ such that $\varphi_{i}\left(T_{1} \oplus \cdots \oplus T_{k}\right)=U\left(m_{i 1} \cdot T_{1} \oplus \cdots \oplus m_{i k} \cdot T_{k} \oplus \mathbf{0}_{d_{i}}\right) U^{*}$.)
7. Suppose that $\left(A,\left\{\varphi^{n}\right\}\right)$ is the direct limit of a direct system $\left\{\left(A_{n}, \varphi_{n}\right)\right\}$, and that $\left(B,\left\{\psi^{n}\right\}\right)$ is the direct limit of another direct system $\left\{\left(B_{n}, \psi_{n}\right)\right\}$. Suppose that there are maps $\alpha^{n}: A_{n} \rightarrow B_{n}$ such that the diagrams

commute for all n. Show that there is a unique homomorphism $\alpha: A \rightarrow B$ such that

commutes for all n.
8. Let J be an ideal in a C^{*}-algebra A. We call J a primitive ideal if $J=\operatorname{ker} \pi$ for some irreducible representation π of A. On the other hand, J is called prime if whenever I_{1} and I_{2} are ideal in A such that $I_{1} I_{2} \subseteq J$, then either $I_{1} \in J$ or $I_{2} \in J$. Show that every primitive ideal in a C^{*}-algebra is prime ${ }^{1}$. (Suggestion: If $I \nsubseteq J$, then $\left.\pi\right|_{I}$ is irreducible and $[\pi(I) \xi]=\mathcal{H}$ for all $\xi \in \mathcal{H}$.)

Part III:

9. Let A be the UHF algebra M_{s} where $s=(2,2,2, \ldots)$. Thus A is the C^{*}-direct limit arising from the maps $\varphi_{M}: M_{2^{n}} \rightarrow M_{2^{n+1}}$ with $M=(2)$. Let B be the C^{*}-direct limit arising from the maps $\varphi_{M^{\prime}}: M_{\left(2^{n-1}, 2^{n-1}\right)} \rightarrow M_{\left(2^{n}, 2^{n}\right)}$ with $M^{\prime}=\left(\begin{array}{cc}1 & 1 \\ 1 & 1\end{array}\right)$. In terms of Bratteli diagrams

Use Elliot's Theorem to show that A and B are isomorphic.
10. Let A be a C^{*}-algebra without unit. Then \widetilde{A} is the smallest C^{*}-algebra with unit containing A as an ideal. It has become apparent in the last few years, that it is convenient to work with the "largest" such algebra (in a sense to be made precise below). For motivation, suppose that A sits in B as an ideal. Then each $b \in B$ defines a pair of operators $L, R \in B(A)$ defined by $L(a)=b a$ and $R(a)=a b$. Note that for all $a, c \in A$,

$$
\text { (1) } \quad L(a c)=L(a) c, \quad \text { (2) } \quad R(a c)=a R(c), \quad \text { (3) } \quad a L(c)=R(a) c \text {. }
$$

Define a multiplier or double centralizer on A to be a pair (L, R) of operators on A satisfying conditions (1), (2), and (3) above. Let $\mathcal{M}(A)$ denote the set of all multipliers on A.
(a) If $(L, R) \in \mathcal{M}(A)$, then use the closed graph theorem to show that L and R must be bounded, and that $\|L\|=\|R\|$.

[^0](b) Define operations and a norm on $\mathcal{M}(A)$ so that $\mathcal{M}(A)$ becomes a C^{*}-algebra which contains A as an ideal. (Use the example of A sitting in B as an ideal above for motivation.)
(c) An ideal A in B is called essential if the only ideal J in B such that $A J=\{0\}$ is $J=\{0\}$. Show that A is an essential ideal in $\mathcal{M}(A)$. Also show that if A is an essential ideal in a B, then there is an injective $*$-homomorphism of B into $\mathcal{M}(A)$ which is the identity on A.
(d) Compute $\mathcal{M}(A)$ for $A=C_{0}(X)$ and $A=\mathcal{K}(\mathcal{H})$.
11. Let $\operatorname{Prim}(A)$ be the set of primitive ideals of a C^{*}-algebra A. If $S \subseteq \operatorname{Prim}(A)$, then define $\operatorname{ker}(S)=\bigcap_{P \in S} P($ with $\operatorname{ker}(\emptyset)=A)$. Also if I is an ideal in A, then define hull $(I)=$ $\{P \in \operatorname{Prim}(A): I \subseteq P\}$. Finally, for each $S \in \operatorname{Prim}(A)$, set $\bar{S}=\operatorname{hull}(\operatorname{ker}(S))$.
(a) Show that if $R_{1}, R_{2} \subset \operatorname{Prim}(A)$, then $\overline{R_{1} \cup R_{2}}=\overline{R_{1}} \cup \overline{R_{2}}$.
(b) Show that if $R_{\lambda} \in \operatorname{Prim}(A)$ for all $\lambda \in \Lambda$, then $\bigcap_{\lambda \in \Lambda} \overline{R_{\lambda}}=\bigcap_{\lambda \in \Lambda} \overline{R_{\lambda}}$.
(c) Conclude that there is a unique topology on $\operatorname{Prim}(A)$ so that $\{\bar{S}: S \subseteq \operatorname{Prim}(A)\}$ are the closed subsets.

This topology is called the Hull-Kernel or Jacobson topology.
12. Consider the C^{*}-algebras
(a) $A=C_{0}(X)$, with X locally compact Hausdorff.
(b) $B=C\left([0,1], M_{2}\right)$, the set of continuous functions from $[0,1]$ to M_{2} with the sup-norm and pointwise operations.
(c) $C=\left\{f \in B: f(0)=\left(\begin{array}{cc}\alpha & 0 \\ 0 & 0\end{array}\right), \alpha \in \mathbb{C}\right\}$.
(d) $D=\left\{f \in B: f(0)=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right), \alpha, \beta \in \mathbb{C}\right\}$.

For each of the above discuss the primitive ideal space and its topology. For example, show that $\operatorname{Prim}(A)$ is homeomorphic to X. Notice that all of the above are CCR.

[^0]: ${ }^{1}$ If A is separable, the converse holds. It has just recently been discovered that the converse can fail without the separable assumption.

