
Math 123 Homework Assignment #4

Due at the end of term (optional)

Part I:

1. Let {An, ϕn } be a direct sequence of C∗-algebras in which all the connecting maps ϕn

are injective. Let (A,ϕn) be “the” direct limit.

(a) Show that ϕn(a) = ϕm(b) if and only if there is a k ≥ max n,m such that ϕn,k(a) =
ϕm,k(b), and

(b) Show that each ϕn is injective.

2. Let A be a C∗-algebra. We call u ∈ A a partial isometry if u∗u is a projection. Show that
the following are equivalent.

(a) u is a partial isometry.

(b) u = uu∗u.

(c) u∗ = u∗uu∗.

(d) uu∗ is a projection.

(e) u∗ is a partial isometry.

(Suggestion: for (b) =⇒ (a), use the C∗-norm identity on ‖uu∗u − u‖ = ‖u(u∗u − 1)‖.)

Part II:

3. Give the details of the argument sketched in lecture that if A is a finite-dimensional
C∗-algebra, then A ∼=

⊕n

i=1 Mni
. (Recall that you can use the argument of Corollary BG

to conclude that A has a finite-dimensional faithful representation. Then we may as well
assume that A ⊂ K(H) = B(H). Now apply Theorem AP to the identity representation
of A.)

4. Let T = (Tij) be an operator in Mn

(
B(H)

)
. Show that

‖Tij‖ ≤
∥∥(Tij)

∥∥ ≤
∑

ij

‖Tij‖.
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5. Let Ms be a UHF algebra such which is not a matrix algebra. (This is automatic if
s : Z

+ → { 2, 3, . . . }.) Show that Ms is not GCR.

6. Recall the following notations. Let n = (n1, . . . , nk) ∈ (Z+)k, and |n| = n1 + · · ·nk.
View elements of Mn = Mn1

⊕ · · · ⊕ Mnk
as block diagonal matrices in M|n|. Recall that

M = (mij) ∈ Ms×k(N) is called admissible if
∑k

j=1 mijnj ≤ ri for all i = 1, 2, . . . , s. We
defined ϕM : Mn → Mr by ϕM(T1 ⊕ · · · ⊕ Tk) = (T ′

1 ⊕ · · · ⊕ T ′
s) where

T ′
i = mi1 · T1 ⊕ · · · ⊕ mik · Tk ⊕ 0di

,

with di = ri −
∑k

j=1 mijnj, and m · T = T ⊕ · · · ⊕ T︸ ︷︷ ︸
m times

.

Prove that if ϕ : Mn → Mr is a ∗-homomorphism, then there is a unitary u ∈ Mr such
that ϕ = Ad u ◦ ϕM for some admissible matrix M .
(Suggestions: (1) View ϕ as a (possibly degenerate) representation of Mn ⊆ M|n| = B(C|n|)
into Mr ⊆ B(C|r|). Use Theorem AP to write ϕ as

∑
i π

i, where each πi is an irreducible
subrepresentation equivalent to a subrepresentation of id : Mn → B(C|n|). (2) Conclude
that ϕ =

∑s

i=1 ϕi where each ϕi is a ∗-homomorphism of Mn into Mri
= B(Cri). Then use

Theorem AP again to see that ϕi
∼=

⊕k

j=1 mij · idMnj
. (3) Now show that there is a U ∈ Mrj

such that ϕi(T1 ⊕ · · · ⊕ Tk) = U(mi1 · T1 ⊕ · · · ⊕ mik · Tk ⊕ 0di
)U∗.)

7. Suppose that
(
A, {ϕn }

)
is the direct limit of a direct system { (An, ϕn) }, and that(

B, {ψn }
)

is the direct limit of another direct system { (Bn, ψn) }. Suppose that there
are maps αn : An → Bn such that the diagrams

An

αn

²²

ϕn
// An+1

αn+1

²²

Bn ψn

// Bn+1

commute for all n. Show that there is a unique homomorphism α : A → B such that

An

ϕn

²²

αn
// Bn

ψn

²²

A α
// B

commutes for all n.
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8. Let J be an ideal in a C*-algebra A. We call J a primitive ideal if J = ker π for some
irreducible representation π of A. On the other hand, J is called prime if whenever I1 and
I2 are ideal in A such that I1I2 ⊆ J , then either I1 ∈ J or I2 ∈ J . Show that every primitive
ideal in a C*-algebra is prime1. (Suggestion: If I 6⊆ J , then π|I is irreducible and [π(I)ξ] = H
for all ξ ∈ H.)

Part III:

9. Let A be the UHF algebra Ms where s = (2, 2, 2, . . .). Thus A is the C∗-direct limit arising
from the maps ϕM : M2n → M2n+1 with M = (2). Let B be the C∗-direct limit arising from
the maps ϕM ′ : M(2n−1,2n−1) → M(2n,2n) with M ′ =

(
1 1
1 1

)
. In terms of Bratteli diagrams

2

4

8

1

²² ÁÁ
==

==
==

= 1

²²¡¡¢¢
¢¢

¢¢
¢

2

²² ÁÁ
==

==
==

= 2

²²¡¡¢¢
¢¢

¢¢
¢

4 4

Use Elliot’s Theorem to show that A and B are isomorphic.

10. Let A be a C∗-algebra without unit. Then Ã is the smallest C∗-algebra with unit
containing A as an ideal. It has become apparent in the last few years, that it is convenient
to work with the “largest” such algebra (in a sense to be made precise below). For motivation,
suppose that A sits in B as an ideal. Then each b ∈ B defines a pair of operators L,R ∈ B(A)
defined by L(a) = ba and R(a) = ab. Note that for all a, c ∈ A,

(1) L(ac) = L(a)c, (2) R(ac) = aR(c), (3) aL(c) = R(a)c.

Define a multiplier or double centralizer on A to be a pair (L,R) of operators on A satisfying
conditions (1), (2), and (3) above. Let M(A) denote the set of all multipliers on A.

(a) If (L,R) ∈ M(A), then use the closed graph theorem to show that L and R must be
bounded, and that ‖L‖ = ‖R‖.

1If A is separable, the converse holds. It has just recently been discovered that the converse can fail

without the separable assumption.
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(b) Define operations and a norm on M(A) so that M(A) becomes a C∗-algebra which
contains A as an ideal. (Use the example of A sitting in B as an ideal above for
motivation.)

(c) An ideal A in B is called essential if the only ideal J in B such that AJ = { 0 } is
J = { 0 }. Show that A is an essential ideal in M(A). Also show that if A is an
essential ideal in a B, then there is an injective ∗-homomorphism of B into M(A)
which is the identity on A.

(d) Compute M(A) for A = C0(X) and A = K(H).

11. Let Prim(A) be the set of primitive ideals of a C*-algebra A. If S ⊆ Prim(A), then
define ker(S) =

⋂
P∈S P (with ker(∅) = A). Also if I is an ideal in A, then define hull(I) =

{P ∈ Prim(A) : I ⊆ P }. Finally, for each S ∈ Prim(A), set S = hull
(
ker(S)

)
.

(a) Show that if R1, R2 ⊂ Prim(A), then R1 ∪ R2 = R1 ∪ R2.

(b) Show that if Rλ ∈ Prim(A) for all λ ∈ Λ, then
⋂

λ∈Λ Rλ =
⋂

λ∈Λ Rλ.

(c) Conclude that there is a unique topology on Prim(A) so that {S : S ⊆ Prim(A) } are
the closed subsets.

This topology is called the Hull-Kernel or Jacobson topology.

12. Consider the C*-algebras

(a) A = C0(X), with X locally compact Hausdorff.

(b) B = C
(
[0, 1],M2

)
, the set of continuous functions from [0, 1] to M2 with the sup-norm

and pointwise operations.

(c) C = { f ∈ B : f(0) =
(

α 0
0 0

)
, α ∈ C }.

(d) D = { f ∈ B : f(0) =
(

α 0
0 β

)
, α, β ∈ C }.

For each of the above discuss the primitive ideal space and its topology. For example, show
that Prim(A) is homeomorphic to X. Notice that all of the above are CCR.
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