Math 123 Homework Assignment #3 Friday, Math 9, 2008

Part I:

1. Suppose that P and Q are projections in B(H). We say that $P \perp Q$ if $P(H) \perp Q(H)$ and that $P \leq Q$ if $P(H) \subset Q(H)$.

- (a) Show that the following are equivalent.
 - (i) $P \perp Q$.
 - (ii) PQ = QP = 0.
 - (iii) P + Q is a projection.
- (b) Show that the following are equivalent.
 - (i) $P \leq Q$.
 - (ii) PQ = QP = P.
 - (iii) Q P is a projection.

(Hint: Note that PQP is a positive operator. Also $PQP = PQ(PQ)^*$ so that PQP = 0 if and only if PQ = QP = 0.)

2. Let $\pi : A \to B(\mathcal{H})$ be an irreducible representation of a C^* -algebra A. Suppose that $\pi(A) \cap \mathcal{K}(\mathcal{H}) \neq \{0\}$. Show that $\pi(A) \supset \mathcal{K}(\mathcal{H})$. ("If the range of an irreducible representation contains one nonzero compact operator, then it contains them all.") If you want a hint, look over the proof of Proposition AV.

3. Complete the proof of Lemma AU. That is, show that CCR(A) is the largest CCR ideal in A in the sense that if J is any CCR ideal in A, then $J \subset CCR(A)$.

Part II:

4. Suppose that π is a non-degenerate representation of A on \mathcal{H} . Let $\{e_{\lambda}\}$ be an approximate identity for A. Show that $\pi(e_{\lambda})$ converges to I in the strong operator topology; that is, prove that $\lim_{\lambda} \pi(e_{\lambda})\xi = \xi$ for all $\xi \in \mathcal{H}$. Conclude that $S = \{\pi(x)\xi : x \in A, \xi \in \mathcal{H}\}$ is dense in \mathcal{H} . (The point is that a priori all we are given is that S spans a dense subset of \mathcal{H} .)

5. Let $\{J_{\alpha} : 0 \leq \alpha \leq \alpha_0\}$ be a composition series for a *separable* C^* -algebra A. Show that α_0 is countable. (Recall that α_0 is called countable if $\{\alpha : 0 \leq \alpha < \alpha_0\}$ is countable. Also, for each $\alpha < \alpha_0$ notice that you can find $a_{\alpha} \in J_{\alpha+1}$ such that $||a_{\alpha+1} - a|| \geq 1$ for all $a \in J_{\alpha}$.)

6. Suppose that $\{J_{\alpha} : 0 \leq \alpha \leq \alpha_0\}$ is a composition series for a C^* -algebra A. A nondegenerate representation π if A is said to *live on the subquotient* $J_{\alpha+1}/J_{\alpha}$ if π is the canonical extension to A of a representation π' of $J_{\alpha+1}$ such that ker $\pi' \supset J_{\alpha}$. That is, π' must be of the form $\pi' = \rho \circ q_{\alpha}$ where $q_{\alpha} : J_{\alpha+1} \to J_{\alpha+1}/J_{\alpha}$ is the natural map, and ρ is a nondegenerate representation of $J_{\alpha+1}/J_{\alpha}$. Show that every *irreducible* representation of A lives on a subquotient so that the spectrum of A can be identified with the disjoint union of the spectra of the subquotients $J_{\alpha+1}/J_{\alpha}$ for $\alpha < \alpha_0$.

Part III:

7. Let \mathcal{H} be a separable Hilbert space with orthonormal basis $\{e_n\}_{n=1}^{\infty}$. Let S be the *unilateral shift* operator $S \in B(\mathcal{H})$ defined by $S(e_n) = e_{n+1}$ for all n. Finally, let A be the unital C^* -algebra generated by S (i.e., $A = C^*(S)$), and let $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$.

- (a) Show that $S^*S SS^* = P$, where P is the rank-one projection onto $\mathbb{C}e_1$.
- (b) Show that A is irreducible, and that $\mathcal{K}(\mathcal{H}) \subseteq A$.
- (c) Show that if $\alpha \in \mathbb{T}$, then there is a unitary operator U in $B(\mathcal{H})$ such that $USU^* = \alpha S$.
- (d) Show that the quotient $A/\mathcal{K}(\mathcal{H})$ is *-isomorphic to $C(\mathbb{T})$.
- (e) Conclude that A is GCR, but not CCR.
- (f) Describe the (equivalence classes) of irreducible representations of A.

Suggestions: In part (b), show that e_1 is cyclic for the identity representation of A. Now observe that if V is a closed invariant subspace for A, then either $e_1 \in V$ or $e_1 \in V^{\perp}$. In part (d), notice that the image of S in the quotient is unitary (hence normal), generates, and has spectrum \mathbb{T} .

8. Let \mathcal{H} be a *separable* infinite dimensional Hilbert space. Recall that $T \in B(\mathcal{H})$ is said to be *below* if there is an $\epsilon > 0$ such that $|T\xi| \ge \epsilon |\xi|$ for all $\xi \in \mathcal{H}$.

- (a) Show that if $T \in B(\mathcal{H})_{s.a.}$ is bounded from below, then T has a bounded inverse.
- (b) If $T \in B(\mathcal{H})_{\text{s.a.}}$ and $\epsilon > 0$, then define

$$M_{\epsilon} = \overline{\operatorname{span}}\{f(T)\xi : \xi \in \mathcal{H}, f \in C(\sigma(T))\}, \text{ and } f(\lambda) = 0 \text{ if } |\lambda| \le \epsilon\}.$$

Show that $|T\xi| \ge \epsilon |\xi|$ for all $\xi \in M_{\epsilon}$, and that $TM_{\epsilon} = M_{\epsilon}$.

- (c) Show that if $T \in B(\mathcal{H})_{\text{s.a.}}$ is not compact, then there is an $\epsilon > 0$ so that M_{ϵ} is infinite dimensional. In particular, conclude that there is a partial isometry $V \in B(\mathcal{H})$ such that V^*TV has a bounded inverse.
- (d) Show that $\mathcal{K}(\mathcal{H})$ is the only non-zero proper closed ideal in $B(\mathcal{H})$.
- (e) Assuming that any C^* -algebra has irreducible representations, conclude that $B(\mathcal{H})$ is not a GCR algebra.