## Math 123 Homework Assignment \#3

Friday, Math 9, 2008

## Part I:

1. Suppose that $P$ and $Q$ are projections in $B(H)$. We say that $P \perp Q$ if $P(H) \perp Q(H)$ and that $P \leq Q$ if $P(H) \subset Q(H)$.
(a) Show that the following are equivalent.
(i) $P \perp Q$.
(ii) $P Q=Q P=0$.
(iii) $P+Q$ is a projection.
(b) Show that the following are equivalent.
(i) $P \leq Q$.
(ii) $P Q=Q P=P$.
(iii) $Q-P$ is a projection.
(Hint: Note that $P Q P$ is a positive operator. Also $P Q P=P Q(P Q)^{*}$ so that $P Q P=0$ if and only if $P Q=Q P=0$.)
2. Let $\pi: A \rightarrow B(\mathcal{H})$ be an irreducible representation of a $C^{*}$-algebra $A$. Suppose that $\pi(A) \cap \mathcal{K}(\mathcal{H}) \neq\{0\}$. Show that $\pi(A) \supset \mathcal{K}(\mathcal{H})$. ("If the range of an irreducible representation contains one nonzero compact operator, then it contains them all.") If you want a hint, look over the proof of Proposition AV.
3. Complete the proof of Lemma AU. That is, show that $\operatorname{CCR}(A)$ is the largest $C C R$ ideal in $A$ in the sense that if $J$ is any $C C R$ ideal in $A$, then $J \subset \operatorname{CCR}(A)$.

## Part II:

4. Suppose that $\pi$ is a non-degenerate representation of $A$ on $\mathcal{H}$. Let $\left\{e_{\lambda}\right\}$ be an approximate identity for $A$. Show that $\pi\left(e_{\lambda}\right)$ converges to $I$ in the strong operator topology; that is, prove that $\lim _{\lambda} \pi\left(e_{\lambda}\right) \xi=\xi$ for all $\xi \in \mathcal{H}$. Conclude that $S=\{\pi(x) \xi: x \in A, \xi \in \mathcal{H}\}$ is dense in $\mathcal{H}$. (The point is that a priori all we are given is that $S$ spans a dense subset of $\mathcal{H}$.)
5. Let $\left\{J_{\alpha}: 0 \leq \alpha \leq \alpha_{0}\right\}$ be a composition series for a separable $C^{*}$-algebra $A$. Show that $\alpha_{0}$ is countable. (Recall that $\alpha_{0}$ is called countable if $\left\{\alpha: 0 \leq \alpha<\alpha_{0}\right\}$ is countable. Also, for each $\alpha<\alpha_{0}$ notice that you can find $a_{\alpha} \in J_{\alpha+1}$ such that $\left\|a_{\alpha+1}-a\right\| \geq 1$ for all $a \in J_{\alpha}$.)
6. Suppose that $\left\{J_{\alpha}: 0 \leq \alpha \leq \alpha_{0}\right\}$ is a composition series for a $C^{*}$-algebra $A$. A nondegenerate representation $\pi$ if $A$ is said to live on the subquotient $J_{\alpha+1} / J_{\alpha}$ if $\pi$ is the canonical extension to $A$ of a representation $\pi^{\prime}$ of $J_{\alpha+1}$ such that ker $\pi^{\prime} \supset J_{\alpha}$. That is, $\pi^{\prime}$ must be of the form $\pi^{\prime}=\rho \circ q_{\alpha}$ where $q_{\alpha}: J_{\alpha+1} \rightarrow J_{\alpha+1} / J_{\alpha}$ is the natural map, and $\rho$ is a nondegenerate representation of $J_{\alpha+1} / J_{\alpha}$. Show that every irreducible representation of $A$ lives on a subquotient so that the spectrum of $A$ can be identified with the disjoint union of the spectra of the subquotients $J_{\alpha+1} / J_{\alpha}$ for $\alpha<\alpha_{0}$.

## Part III:

7. Let $\mathcal{H}$ be a separable Hilbert space with orthonormal basis $\left\{e_{n}\right\}_{n=1}^{\infty}$. Let $S$ be the unilateral shift operator $S \in B(\mathcal{H})$ defined by $S\left(e_{n}\right)=e_{n+1}$ for all $n$. Finally, let $A$ be the unital $C^{*}$-algebra generated by $S$ (i.e., $A=C^{*}(S)$ ), and let $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$.
(a) Show that $S^{*} S-S S^{*}=P$, where $P$ is the rank-one projection onto $\mathbb{C} e_{1}$.
(b) Show that $A$ is irreducible, and that $\mathcal{K}(\mathcal{H}) \subseteq A$.
(c) Show that if $\alpha \in \mathbb{T}$, then there is a unitary operator $U$ in $B(\mathcal{H})$ such that $U S U^{*}=\alpha S$.
(d) Show that the quotient $A / \mathcal{K}(\mathcal{H})$ is $*$-isomorphic to $C(\mathbb{T})$.
(e) Conclude that $A$ is GCR, but not CCR.
(f) Describe the (equivalence classes) of irreducible representations of $A$.

Suggestions: In part (b), show that $e_{1}$ is cyclic for the identity representation of $A$. Now observe that if $V$ is a closed invariant subspace for $A$, then either $e_{1} \in V$ or $e_{1} \in V^{\perp}$. In part (d), notice that the image of $S$ in the quotient is unitary (hence normal), generates, and has spectrum $\mathbb{T}$.
8. Let $\mathcal{H}$ be a separable infinite dimensional Hilbert space. Recall that $T \in B(\mathcal{H})$ is said to be below if there is an $\epsilon>0$ such that $|T \xi| \geq \epsilon|\xi|$ for all $\xi \in \mathcal{H}$.
(a) Show that if $T \in B(\mathcal{H})_{\text {s.a. }}$ is bounded from below, then $T$ has a bounded inverse.
(b) If $T \in B(\mathcal{H})_{\mathrm{s} . \mathrm{a}}$. and $\epsilon>0$, then define

$$
M_{\epsilon}=\overline{\operatorname{span}}\{f(T) \xi: \xi \in \mathcal{H}, f \in C(\sigma(T)), \text { and } f(\lambda)=0 \text { if }|\lambda| \leq \epsilon\}
$$

Show that $|T \xi| \geq \epsilon|\xi|$ for all $\xi \in M_{\epsilon}$, and that $T M_{\epsilon}=M_{\epsilon}$.
(c) Show that if $T \in B(\mathcal{H})_{\text {s.a. }}$ is not compact, then there is an $\epsilon>0$ so that $M_{\epsilon}$ is infinite dimensional. In particular, conclude that there is a partial isometry $V \in B(\mathcal{H})$ such that $V^{*} T V$ has a bounded inverse.
(d) Show that $\mathcal{K}(\mathcal{H})$ is the only non-zero proper closed ideal in $B(\mathcal{H})$.
(e) Assuming that any $C^{*}$-algebra has irreducible representations, conclude that $B(\mathcal{H})$ is not a GCR algebra.

