Math 123 Homework Assignment #3 Friday, Math 9, 2008

Part I:

1. Suppose that P and Q are projections in B(H). We say that $P \perp Q$ if $P(H) \perp Q(H)$ and that $P \leq Q$ if $P(H) \subset Q(H)$.

- (a) Show that the following are equivalent.
 - (i) $P \perp Q$.
 - (ii) PQ = QP = 0.
 - (iii) P + Q is a projection.
- (b) Show that the following are equivalent.
 - (i) $P \leq Q$.
 - (ii) PQ = QP = P.
 - (iii) Q P is a projection.

(Hint: Note that PQP is a positive operator. Also $PQP = PQ(PQ)^*$ so that PQP = 0 if and only if PQ = QP = 0.)

2. Let $\pi : A \to B(\mathcal{H})$ be an irreducible representation of a C^* -algebra A. Suppose that $\pi(A) \cap \mathcal{K}(\mathcal{H}) \neq \{0\}$. Show that $\pi(A) \supset \mathcal{K}(\mathcal{H})$. ("If the range of an irreducible representation contains one nonzero compact operator, then it contains them all.") If you want a hint, look over the proof of Proposition AV.

ANS: By assumption, id : $\pi(A) \to B(\mathcal{H})$ is irreducible. If $\pi(A) \bigcap \mathcal{K}(\mathcal{H}) \neq \{0\}$, then the restriction of id to the *ideal* $\pi(A) \bigcap \mathcal{K}(\mathcal{H})$ is non-zero, and hence irreducible. But then $\pi(A) \bigcap \mathcal{K}(\mathcal{H})$ is an irreducible C^* -subalgebra of $\mathcal{K}(\mathcal{H})$, and is therefore all of $\mathcal{K}(\mathcal{H})$.

3. Complete the proof of Lemma AU. That is, show that CCR(A) is the largest CCR ideal in A in the sense that if J is any CCR ideal in A, then $J \subset CCR(A)$.

Part II:

4. Suppose that π is a non-degenerate representation of A on \mathcal{H} . Let $\{e_{\lambda}\}$ be an approximate identity for A. Show that $\pi(e_{\lambda})$ converges to I in the strong operator topology; that is, prove that $\lim_{\lambda} \pi(e_{\lambda})\xi = \xi$ for all $\xi \in \mathcal{H}$. Conclude that $S = \{\pi(x)\xi : x \in A, \xi \in \mathcal{H}\}$ is dense in \mathcal{H} . (The point is that a priori all we are given is that S spans a dense subset of \mathcal{H} .)

ANS: Let $\xi \in \mathcal{H}$ and $\epsilon > 0$ be given. By assumption there are vectors $\xi_1, \ldots, \xi_n \in \mathcal{H}$ and elements $x_1, \ldots, x_n \in A$ such that $\|\xi - \sum_{i=1}^n \pi(x_i)\xi_i\| < \epsilon$. On the other hand, $e_{\lambda}x_i \to x_i$ for each *i*. Thus $\pi(e_{\lambda}x_i) \to \pi(x_i)$ in norm. Choose $\lambda_0 \in \Lambda$ so that $\lambda \geq \lambda_0$ implies that $\|\sum_{i=1}^n \pi(x_i)\xi_i - \sum_{i=1}^n \pi(e_{\lambda}x_i)\xi_i\| < \epsilon$. Then

$$\|\xi - \pi(e_{\lambda})\xi\| \le \left\|\xi - \sum_{i=1}^{n} \pi(x_{i})\xi_{i}\right\| + \left\|\sum_{i=1}^{n} \pi(x_{i})\xi_{i} - \sum_{i=1}^{n} \pi(e_{\lambda}x_{i})\xi_{i}\right\| + \left\|\pi(e_{\lambda})\left(\sum_{i=1}^{n} \pi(x_{i})\xi_{i} - \xi\right)\right\| < 3\epsilon.$$

5. Let $\{J_{\alpha} : 0 \leq \alpha \leq \alpha_0\}$ be a composition series for a *separable* C^* -algebra A. Show that α_0 is countable. (Recall that α_0 is called countable if $\{\alpha : 0 \leq \alpha < \alpha_0\}$ is countable. Also, for each $\alpha < \alpha_0$ notice that you can find $a_{\alpha} \in J_{\alpha+1}$ such that $||a_{\alpha+1} - a|| \geq 1$ for all $a \in J_{\alpha}$.)

ANS: See Remark 8.12 in my book on crossed products.

6. Suppose that $\{J_{\alpha} : 0 \leq \alpha \leq \alpha_0\}$ is a composition series for a C^* -algebra A. A nondegenerate representation π if A is said to *live on the subquotient* $J_{\alpha+1}/J_{\alpha}$ if π is the canonical extension to A of a representation π' of $J_{\alpha+1}$ such that ker $\pi' \supset J_{\alpha}$. That is, π' must be of the form $\pi' = \rho \circ q_{\alpha}$ where $q_{\alpha} : J_{\alpha+1} \to J_{\alpha+1}/J_{\alpha}$ is the natural map, and ρ is a nondegenerate representation of $J_{\alpha+1}/J_{\alpha}$. Show that every *irreducible* representation of A lives on a subquotient so that the spectrum of A can be identified with the disjoint union of the spectra of the subquotients $J_{\alpha+1}/J_{\alpha}$ for $\alpha < \alpha_0$.

Part III:

7. Let \mathcal{H} be a separable Hilbert space with orthonormal basis $\{e_n\}_{n=1}^{\infty}$. Let S be the *unilateral shift* operator $S \in B(\mathcal{H})$ defined by $S(e_n) = e_{n+1}$ for all n. Finally, let A be the unital C^* -algebra generated by S (i.e., $A = C^*(S)$), and let $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$.

- (a) Show that $S^*S SS^* = P$, where P is the rank-one projection onto $\mathbb{C}e_1$.
- (b) Show that A is irreducible, and that $\mathcal{K}(\mathcal{H}) \subseteq A$.
- (c) Show that if $\alpha \in \mathbb{T}$, then there is a unitary operator U in $B(\mathcal{H})$ such that $USU^* = \alpha S$.

- (d) Show that the quotient $A/\mathcal{K}(\mathcal{H})$ is *-isomorphic to $C(\mathbb{T})$.
- (e) Conclude that A is GCR, but not CCR.
- (f) Describe the (equivalence classes) of irreducible representations of A.

Suggestions: In part (b), show that e_1 is cyclic for the identity representation of A. Now observe that if V is a closed invariant subspace for A, then either $e_1 \in V$ or $e_1 \in V^{\perp}$. In part (d), notice that the image of S in the quotient is unitary (hence normal), generates, and has spectrum \mathbb{T} .

ANS: Look at Example A.31 in my book with Iain Raeburn on Morita equivalence.

8. Let \mathcal{H} be a *separable* infinite dimensional Hilbert space. Recall that $T \in B(\mathcal{H})$ is said to be *below* if there is an $\epsilon > 0$ such that $|T\xi| \ge \epsilon |\xi|$ for all $\xi \in \mathcal{H}$.

- (a) Show that if $T \in B(\mathcal{H})_{s.a.}$ is bounded from below, then T has a bounded inverse.
- (b) If $T \in B(\mathcal{H})_{\text{s.a.}}$ and $\epsilon > 0$, then define

$$M_{\epsilon} = \overline{\operatorname{span}}\{f(T)\xi : \xi \in \mathcal{H}, f \in C(\sigma(T)), \text{ and } f(\lambda) = 0 \text{ if } |\lambda| \le \epsilon\}.$$

Show that $|T\xi| \geq \epsilon |\xi|$ for all $\xi \in M_{\epsilon}$, and that $TM_{\epsilon} = M_{\epsilon}$.

- (c) Show that if $T \in B(\mathcal{H})_{\text{s.a.}}$ is not compact, then there is an $\epsilon > 0$ so that M_{ϵ} is infinite dimensional. In particular, conclude that there is a partial isometry $V \in B(\mathcal{H})$ such that V^*TV has a bounded inverse.
- (d) Show that $\mathcal{K}(\mathcal{H})$ is the only non-zero proper closed ideal in $B(\mathcal{H})$.
- (e) Assuming that any C^* -algebra has irreducible representations, conclude that $B(\mathcal{H})$ is not a GCR algebra.

ANS: See example A.32 in my book on Morita equivalence (written with Iain Raeburn). (a) If T is bounded from below, then $T\mathcal{H}$ is complete and therefore closed. Furthermore, ker $T = \{0\}$. If $T = T^*$, then $T\mathcal{H}^{\perp} = T^*\mathcal{H}^{\perp} = \ker T = \{0\}$. Therefore T is a bounded bijection from \mathcal{H} onto \mathcal{H} , and T^{-1} is bounded by the Closed Graph Theorem.

(b) Let $J_{\epsilon} = \{ f \in C(\sigma(T)) : f(\lambda) = 0 \text{ if } |\lambda| \le \epsilon \}$. Notice that if $f \in J_{\epsilon}$ and $g(\lambda) = \lambda$ for all $\lambda \in \sigma(T)$, then $g^2 |f|^2 \ge \epsilon^2 |f|^2$. It follows that $T^2 f(T)^* f(T) \ge \epsilon^2 f(T)^* f(T)$. Thus,

$$|Tf(T)\xi|^{2} = \langle T^{2}f(T)^{*}f(T)\xi,\xi \rangle$$

$$\geq \epsilon^{2} \langle f(T)^{*}f(T)\xi,\xi \rangle$$

$$= \epsilon^{2} |f(T)\xi|^{2}.$$

Now let $\xi \in M_{\epsilon}$. Let $\{f_{\lambda}\}$ be an approximate identity in J_{ϵ} . Then we see that $f_{\lambda}(T)\xi \to \xi$. (Approximate ξ by $\sum_{i=1}^{n} g_i(T)\xi_i$ with $g_i \in J_{\epsilon}$ and $\xi_i \in \mathcal{H}$.) Thus

$$|T\xi|^2 = \lim_{\lambda} |Tf_{\lambda}(T)\xi| \ge \epsilon^2 \lim_{\lambda} |f_{\lambda}(T)\xi|^2 = \epsilon^2 |\xi|^2.$$

This proves that T is bounded below on M_{ϵ} . But since we have $TM_{\epsilon} \subseteq M_{\epsilon}$ by construction, we have $TM_{\epsilon} = M_{\epsilon}$ by part (a).

(c) Let P_n be the projection onto $M_{\frac{1}{n}}$. Define

$$f_n(\lambda) = \begin{cases} 0 & \text{if } 0 \le \lambda \le \frac{1}{n}, \\ 2(\lambda - \frac{1}{n}) & \text{if } \frac{1}{n} \le \lambda < \frac{2}{n}, \\ \lambda & \text{if } \lambda \ge \frac{2}{n}. \end{cases}$$

Then $f_n \in J_{\frac{1}{n}}$ and $f_n \to g$ uniformly on $\sigma(T)$, where $g(\lambda) = \lambda$ for all $\lambda \in \sigma(T)$. Thus $f_n(T) \to T$ and $P_n f_n(T) = f_n(T)$. If each $M_{\frac{1}{n}}$ were finite dimensional, then P_n , and hence $f_n(T)$, would be finite rank. Then T would be compact.

So choose ϵ so that dim $M_{\epsilon} = \aleph_0 = \dim \mathcal{H}$. Then there is a partial isometry $V : \mathcal{H} \to \mathcal{H}$ such that $V\mathcal{H} = M_{\epsilon}$. Then V^*TV is bounded below on \mathcal{H} and has a bounded inverse by part (a).

(d) Let I be a non-zero (closed) ideal in $B(\mathcal{H})$. Since $I \cap \mathcal{K}(\mathcal{H})$ is an ideal in $\mathcal{K}(\mathcal{H})$ we must have $\mathcal{K}(\mathcal{H}) \subseteq I$ since $\mathcal{K}(\mathcal{H})$ is simple. If $I \neq \mathcal{K}(\mathcal{H})$, then I contains a non-compact operator T. Since I is a C^* -algebra, and is therefore the span of its self-adjoint elements, we may assume that T is self-adjoint. Now it follows from part (c) that I contains an invertible element, and hence that $I = B(\mathcal{H})$ as required.

(e) It follows from the previous part that the Calkin algebra $\mathcal{C}(\mathcal{H}) = B(\mathcal{H})/\mathcal{K}(\mathcal{H})$ is simple. If $B(\mathcal{H})$ were GCR, then $CCR(\mathcal{C}(\mathcal{H})) \neq \{0\}$. Since $\mathcal{C}(\mathcal{H})$ is simple, it follows that $\mathcal{C}(\mathcal{H})$ is CCR. Thus if π is an irreducible representation of $\mathcal{C}(\mathcal{H})$ and e is the identity element of $\mathcal{C}(\mathcal{H})$, then $\pi(e) = I_{\mathcal{H}_{\pi}}$ is a compact operator. This forces \mathcal{H}_{π} to be finite dimensional, and since the simplicity of $\mathcal{C}(\mathcal{H})$ implies that π is an *-isomorphism of $\mathcal{C}(\mathcal{H})$ into $B(\mathcal{H}_{\pi})$ (onto actually), $\mathcal{C}(\mathcal{H})$ must be finite dimensional as well. But one can easily find infinitely many orthogonal infinite dimensional projections $\{P_n\}$ in $B(\mathcal{H})$ (when \mathcal{H} is infinite dimensional). The images of the P_n in $\mathcal{C}(\mathcal{H})$ are clearly independent. This contradiction completes the proof.