Math 123 Homework Assignment \#3

Friday, Math 9, 2008

Part I:

1. Suppose that P and Q are projections in $B(H)$. We say that $P \perp Q$ if $P(H) \perp Q(H)$ and that $P \leq Q$ if $P(H) \subset Q(H)$.
(a) Show that the following are equivalent.
(i) $P \perp Q$.
(ii) $P Q=Q P=0$.
(iii) $P+Q$ is a projection.
(b) Show that the following are equivalent.
(i) $P \leq Q$.
(ii) $P Q=Q P=P$.
(iii) $Q-P$ is a projection.
(Hint: Note that $P Q P$ is a positive operator. Also $P Q P=P Q(P Q)^{*}$ so that $P Q P=0$ if and only if $P Q=Q P=0$.)
2. Let $\pi: A \rightarrow B(\mathcal{H})$ be an irreducible representation of a C^{*}-algebra A. Suppose that $\pi(A) \cap \mathcal{K}(\mathcal{H}) \neq\{0\}$. Show that $\pi(A) \supset \mathcal{K}(\mathcal{H})$. ("If the range of an irreducible representation contains one nonzero compact operator, then it contains them all.") If you want a hint, look over the proof of Proposition AV.

ANS: By assumption, id : $\pi(A) \rightarrow B(\mathcal{H})$ is irreducibe. If $\pi(A) \cap \mathcal{K}(\mathcal{H}) \neq\{0\}$, then the restriction of id to the ideal $\pi(A) \cap \mathcal{K}(\mathcal{H})$ is non-zero, and hence irreducible. But then $\pi(A) \cap \mathcal{K}(\mathcal{H})$ is an irreducible C^{*}-subalgebra of $\mathcal{K}(\mathcal{H})$, and is therefore all of $\mathcal{K}(\mathcal{H})$.
3. Complete the proof of Lemma AU. That is, show that $\operatorname{CCR}(A)$ is the largest $C C R$ ideal in A in the sense that if J is any $C C R$ ideal in A, then $J \subset \operatorname{CCR}(A)$.

Part II:

4. Suppose that π is a non-degenerate representation of A on \mathcal{H}. Let $\left\{e_{\lambda}\right\}$ be an approximate identity for A. Show that $\pi\left(e_{\lambda}\right)$ converges to I in the strong operator topology; that is, prove that $\lim _{\lambda} \pi\left(e_{\lambda}\right) \xi=\xi$ for all $\xi \in \mathcal{H}$. Conclude that $S=\{\pi(x) \xi: x \in A, \xi \in \mathcal{H}\}$ is dense in \mathcal{H}. (The point is that a priori all we are given is that S spans a dense subset of \mathcal{H}.)

ANS: Let $\xi \in \mathcal{H}$ and $\epsilon>0$ be given. By assumption there are vectors $\xi_{1}, \ldots, \xi_{n} \in \mathcal{H}$ and elements $x_{1}, \ldots, x_{n} \in A$ such that $\left\|\xi-\sum_{i=1}^{n} \pi\left(x_{i}\right) \xi_{i}\right\|<\epsilon$. On the other hand, $e_{\lambda} x_{i} \rightarrow x_{i}$ for each i. Thus $\pi\left(e_{\lambda} x_{i}\right) \rightarrow \pi\left(x_{i}\right)$ in norm. Choose $\lambda_{0} \in \Lambda$ so that $\lambda \geq \lambda_{0}$ implies that $\| \sum_{i=1}^{n} \pi\left(x_{i}\right) \xi_{i}-$ $\sum_{i=1}^{n} \pi\left(e_{\lambda} x_{i}\right) \xi_{i} \|<\epsilon$. Then

$$
\left\|\xi-\pi\left(e_{\lambda}\right) \xi\right\| \leq\left\|\xi-\sum_{i=1}^{n} \pi\left(x_{i}\right) \xi_{i}\right\|+\left\|\sum_{i=1}^{n} \pi\left(x_{i}\right) \xi_{i}-\sum_{i=1}^{n} \pi\left(e_{\lambda} x_{i}\right) \xi_{i}\right\|+\left\|\pi\left(e_{\lambda}\right)\left(\sum_{i=1}^{n} \pi\left(x_{i}\right) \xi_{i}-\xi\right)\right\|<3 \epsilon .
$$

5. Let $\left\{J_{\alpha}: 0 \leq \alpha \leq \alpha_{0}\right\}$ be a composition series for a separable C^{*}-algebra A. Show that α_{0} is countable. (Recall that α_{0} is called countable if $\left\{\alpha: 0 \leq \alpha<\alpha_{0}\right\}$ is countable. Also, for each $\alpha<\alpha_{0}$ notice that you can find $a_{\alpha} \in J_{\alpha+1}$ such that $\left\|a_{\alpha+1}-a\right\| \geq 1$ for all $a \in J_{\alpha}$.)

ANS: See Remark 8.12 in my book on crossed products.
6. Suppose that $\left\{J_{\alpha}: 0 \leq \alpha \leq \alpha_{0}\right\}$ is a composition series for a C^{*}-algebra A. A nondegenerate representation π if A is said to live on the subquotient $J_{\alpha+1} / J_{\alpha}$ if π is the canonical extension to A of a representation π^{\prime} of $J_{\alpha+1}$ such that ker $\pi^{\prime} \supset J_{\alpha}$. That is, π^{\prime} must be of the form $\pi^{\prime}=\rho \circ q_{\alpha}$ where $q_{\alpha}: J_{\alpha+1} \rightarrow J_{\alpha+1} / J_{\alpha}$ is the natural map, and ρ is a nondegenerate representation of $J_{\alpha+1} / J_{\alpha}$. Show that every irreducible representation of A lives on a subquotient so that the spectrum of A can be identified with the disjoint union of the spectra of the subquotients $J_{\alpha+1} / J_{\alpha}$ for $\alpha<\alpha_{0}$.

Part III:

7. Let \mathcal{H} be a separable Hilbert space with orthonormal basis $\left\{e_{n}\right\}_{n=1}^{\infty}$. Let S be the unilateral shift operator $S \in B(\mathcal{H})$ defined by $S\left(e_{n}\right)=e_{n+1}$ for all n. Finally, let A be the unital C^{*}-algebra generated by S (i.e., $A=C^{*}(S)$), and let $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$.
(a) Show that $S^{*} S-S S^{*}=P$, where P is the rank-one projection onto $\mathbb{C} e_{1}$.
(b) Show that A is irreducible, and that $\mathcal{K}(\mathcal{H}) \subseteq A$.
(c) Show that if $\alpha \in \mathbb{T}$, then there is a unitary operator U in $B(\mathcal{H})$ such that $U S U^{*}=\alpha S$.
(d) Show that the quotient $A / \mathcal{K}(\mathcal{H})$ is $*$-isomorphic to $C(\mathbb{T})$.
(e) Conclude that A is GCR, but not CCR .
(f) Describe the (equivalence classes) of irreducible representations of A.

Suggestions: In part (b), show that e_{1} is cyclic for the identity representation of A. Now observe that if V is a closed invariant subspace for A, then either $e_{1} \in V$ or $e_{1} \in V^{\perp}$. In part (d), notice that the image of S in the quotient is unitary (hence normal), generates, and has spectrum \mathbb{T}.

ANS: Look at Example A. 31 in my book with Iain Raeburn on Morita equivalence.
8. Let \mathcal{H} be a separable infinite dimensional Hilbert space. Recall that $T \in B(\mathcal{H})$ is said to be below if there is an $\epsilon>0$ such that $|T \xi| \geq \epsilon|\xi|$ for all $\xi \in \mathcal{H}$.
(a) Show that if $T \in B(\mathcal{H})_{\text {s.a. }}$ is bounded from below, then T has a bounded inverse.
(b) If $T \in B(\mathcal{H})_{\text {s.a. }}$ and $\epsilon>0$, then define

$$
M_{\epsilon}=\overline{\operatorname{span}}\{f(T) \xi: \xi \in \mathcal{H}, f \in C(\sigma(T)), \text { and } f(\lambda)=0 \text { if }|\lambda| \leq \epsilon\}
$$

Show that $|T \xi| \geq \epsilon|\xi|$ for all $\xi \in M_{\epsilon}$, and that $T M_{\epsilon}=M_{\epsilon}$.
(c) Show that if $T \in B(\mathcal{H})_{\text {s.a. }}$ is not compact, then there is an $\epsilon>0$ so that M_{ϵ} is infinite dimensional. In particular, conclude that there is a partial isometry $V \in B(\mathcal{H})$ such that $V^{*} T V$ has a bounded inverse.
(d) Show that $\mathcal{K}(\mathcal{H})$ is the only non-zero proper closed ideal in $B(\mathcal{H})$.
(e) Assuming that any C^{*}-algebra has irreducible representations, conclude that $B(\mathcal{H})$ is not a GCR algebra.
ANS: See example A. 32 in my book on Morita equivalence (written with Iain Raeburn). (a) If T is bounded from below, then $T \mathcal{H}$ is complete and therefore closed. Furthermore, $\operatorname{ker} T=\{0\}$. If $T=T^{*}$, then $T \mathcal{H}^{\perp}=T^{*} \mathcal{H}^{\perp}=\operatorname{ker} T=\{0\}$. Therefore T is a bounded bijection from \mathcal{H} onto \mathcal{H}, and T^{-1} is bounded by the Closed Graph Theorem.
(b) Let $J_{\epsilon}=\{f \in C(\sigma(T)): f(\lambda)=0$ if $|\lambda| \leq \epsilon\}$. Notice that if $f \in J_{\epsilon}$ and $g(\lambda)=\lambda$ for all $\lambda \in \sigma(T)$, then $g^{2}|f|^{2} \geq \epsilon^{2}|f|^{2}$. It follows that $T^{2} f(T)^{*} f(T) \geq \epsilon^{2} f(T)^{*} f(T)$. Thus,

$$
\begin{aligned}
|T f(T) \xi|^{2} & =\left\langle T^{2} f(T)^{*} f(T) \xi, \xi\right\rangle \\
& \geq \epsilon^{2}\left\langle f(T)^{*} f(T) \xi, \xi\right\rangle \\
& =\epsilon^{2}|f(T) \xi|^{2} .
\end{aligned}
$$

Now let $\xi \in M_{\epsilon}$. Let $\left\{f_{\lambda}\right\}$ be an approximate identity in J_{ϵ}. Then we see that $f_{\lambda}(T) \xi \rightarrow \xi$. (Approximate ξ by $\sum_{i=1}^{n} g_{i}(T) \xi_{i}$ with $g_{i} \in J_{\epsilon}$ and $\xi_{i} \in \mathcal{H}$.) Thus

$$
|T \xi|^{2}=\lim _{\lambda}\left|T f_{\lambda}(T) \xi\right| \geq \epsilon^{2} \lim _{\lambda}\left|f_{\lambda}(T) \xi\right|^{2}=\epsilon^{2}|\xi|^{2}
$$

This proves that T is bounded below on M_{ϵ}. But since we have $T M_{\epsilon} \subseteq M_{\epsilon}$ by construction, we have $T M_{\epsilon}=M_{\epsilon}$ by part (a).
(c) Let P_{n} be the projection onto $M_{\frac{1}{n}}$. Define

$$
f_{n}(\lambda)= \begin{cases}0 & \text { if } 0 \leq \lambda \leq \frac{1}{n} \\ 2\left(\lambda-\frac{1}{n}\right) & \text { if } \frac{1}{n} \leq \lambda<\frac{2}{n} \\ \lambda & \text { if } \lambda \geq \frac{2}{n}\end{cases}
$$

Then $f_{n} \in J_{\frac{1}{n}}$ and $f_{n} \rightarrow g$ uniformly on $\sigma(T)$, where $g(\lambda)=\lambda$ for all $\lambda \in \sigma(T)$. Thus $f_{n}(T) \rightarrow T$ and $P_{n} f_{n}(T)^{n}=f_{n}(T)$. If each $M_{\frac{1}{n}}$ were finite dimensional, then P_{n}, and hence $f_{n}(T)$, would be finite rank. Then T would be compact.

So choose ϵ so that $\operatorname{dim} M_{\epsilon}=\aleph_{0}=\operatorname{dim} \mathcal{H}$. Then there is a partial isometry $V: \mathcal{H} \rightarrow \mathcal{H}$ such that $V \mathcal{H}=M_{\epsilon}$. Then $V^{*} T V$ is bounded below on \mathcal{H} and has a bounded inverse by part (a).
(d) Let I be a non-zero (closed) ideal in $B(\mathcal{H})$. Since $I \cap \mathcal{K}(\mathcal{H})$ is an ideal in $\mathcal{K}(\mathcal{H})$ we must have $\mathcal{K}(\mathcal{H}) \subseteq I$ since $\mathcal{K}(\mathcal{H})$ is simple. If $I \neq \mathcal{K}(\mathcal{H})$, then I contains a non-compact operator T. Since I is a C^{*}-algebra, and is therefore the span of its self-adjoint elements, we may assume that T is self-adjoint. Now it follows from part (c) that I contains an invertible element, and hence that $I=B(\mathcal{H})$ as required.
(e) It follows from the previous part that the Calkin algebra $\mathcal{C}(\mathcal{H})=B(\mathcal{H}) / \mathcal{K}(\mathcal{H})$ is simple. If $B(\mathcal{H})$ were GCR, then $C C R(\mathcal{C}(\mathcal{H})) \neq\{0\}$. Since $\mathcal{C}(\mathcal{H})$ is simple, it follows that $\mathcal{C}(\mathcal{H})$ is CCR. Thus if π is an irreducible representation of $\mathcal{C}(\mathcal{H})$ and e is the identity element of $\mathcal{C}(\mathcal{H})$, then $\pi(e)=I_{\mathcal{H}_{\pi}}$ is a compact operator. This forces \mathcal{H}_{π} to be finite dimensional, and since the simplicity of $\mathcal{C}(\mathcal{H})$ implies that π is an $*$-isomorphism of $\mathcal{C}(\mathcal{H})$ into $B\left(\mathcal{H}_{\pi}\right)$ (onto actually), $\mathcal{C}(\mathcal{H})$ must be finite dimensional as well. But one can easily find infinitely many orthogonal infinite dimensional projections $\left\{P_{n}\right\}$ in $B(\mathcal{H})$ (when \mathcal{H} is infinite dimensional). The images of the P_{n} in $\mathcal{C}(\mathcal{H})$ are clearly independent. This contradiction completes the proof.

