Math 123 Homework Assignment #2 Due Monday, April 21, 2008

Part I:

- 1. Suppose that A is a C^* -algebra.
 - (a) Suppose that $e \in A$ satisfies xe = x for all $x \in A$. Show that $e = e^*$ and that ||e|| = 1. Conclude that e is a unit for A.
 - (b) Show that for any $x \in A$, $||x|| = \sup_{||y|| \le 1} ||xy||$. (Do not assume that A has an approximate identity.)

2. Suppose that A is a Banach algebra with an involution $x \mapsto x^*$ that satisfies $||x||^2 \leq ||x^*x||$. Then show that A is a Banach *-algebra (i.e., $||x^*|| = ||x||$). In fact, show that A is a C*-algebra.

3. Let A^1 be the vector space direct sum $A \oplus \mathbb{C}$ with the *-algebra structure given by

$$(a,\lambda)(b,\mu) := (ab + \lambda b + \mu a, \lambda \mu)$$
$$(a,\lambda)^* := (a^*, \overline{\lambda}).$$

Show that there is a norm on A^1 making it into a C^* -algebra such that the natural embedding of A into A^1 is isometric. (Hint: If $1 \in A$, then show that $(a, \lambda) \mapsto (a + \lambda 1_A, \lambda)$ is a *isomorphism of A^1 onto the C^* -algebra direct sum of A and \mathbb{C} . If $1 \notin A$, then for each $a \in A$, let L_a be the linear operator on A defined by left-multiplication by a: $L_a(x) = ax$. Then show that the collection B of operators on A of the form $\lambda I + L_a$ is a C^* -algebra with respect to the operator norm, and that $a \mapsto L_a$ is an isometric *-isomorphism.)

- 4. In this question, ideal always means 'closed two-sided ideal.'
 - (a) Suppose that I and J are ideals in a C^* -algebra A. Show that IJ defined to be the closed linear span of products from I and J equals $I \bigcap J$.
 - (b) Suppose that J is an ideal in a C^* -algebra A, and that I is an ideal in J. Show that I is an ideal in A.

Part II:

5. Suppose that A is a unital C^{*}-algebra and that $f : \mathbb{R} \to \mathbb{C}$ is continuous. Show that the map $x \mapsto f(x)$ is a continuous map from $A_{\text{s.a.}} = \{x \in A : x = x^*\}$ to A.

6. Prove Corollary AA: Show that every separable C^* -algebra contains a sequence which is an approximate identity. (Recall that we showed in the proof of Theorem Z that if $x \in A_{\text{s.a.}}$, and if $x \in \{x_1, \ldots, x_n\} = \lambda$, then $||x - xe_{\lambda}||^2 < 1/4n$.)

7. Suppose that $\pi: A \to B(\mathcal{H})$ is a representation. Prove that the following are equivalent.

- (a) π has no non-trivial closed invariant subspaces; that is, π is irreducible.
- (b) The commutant $\pi(A)' := \{ T \in B(\mathcal{H}) : T\pi(a) = \pi(a)T \text{ for all } a \in A \}$ consists solely of scalar multiples of the identity; that is $\pi(A)' = \mathbb{C}I$.
- (c) No non-trivial projection in $B(\mathcal{H})$ commutes with every operator in $\pi(A)$.
- (d) Every vector in \mathcal{H} is cyclic for π .

(Suggestions. Observe that $\pi(A)'$ is a C^* -algebra. If $A \in \pi(A)'_{\text{s.a.}}$ and $A \neq \alpha I$ for some $\alpha \in \mathbb{C}$, then use the Spectral Theorem to produce nonzero operators $B_1, B_2 \in \pi(A)'$ with $B_1B_2 = B_2B_1 = 0$. Observe that the closure of the range of B_1 is a non-trivial invariant subspace for π .)

Part III:

8. As in footnote 1 of problem #8 on the first assignment, use the maximum modulus theorem to view the disk algebra, A(D), as a Banach subalgebra of $C(\mathbb{T})$.¹ Let $f \in A(D)$ be the identity function: f(z) = z for all $z \in \mathbb{T}$. Show that $\sigma_{C(\mathbb{T})}(f) = \mathbb{T}$, while $\sigma_{A(D)}(f) = \overline{D}$. This shows that, unlike the case of C^* -algebras where we have "spectral permanence," we can have $\sigma_A(b)$ a proper subset of $\sigma_B(b)$ when B is a unital subalgebra of A.

9. Suppose that U is an bounded operator on a complex Hilbert space \mathcal{H} . Show that the following are equivalent.

¹Although it is not relevant to the problem, we can put an involution on $C(\mathbb{T})$, $f^*(z) = \overline{f(\overline{z})}$, making A(D) a Banach *-subalgebra of C(T). You can then check that neither $C(\mathbb{T})$ nor A(D) is a C^* -algebra with respect to this involution.

(a) U is isometric on $\ker(U)^{\perp}$.

(b)
$$UU^*U = U$$
.

- (c) UU^* is a projection².
- (d) U^*U is a projection.

An operator in $B(\mathcal{H})$ satisfying (a), and hence (a)–(d), is called a *partial isometry* on \mathcal{H} . The reason for this terminology ought to be clear from part (a).

Conclude that if U is a partial isometry, then UU^* is the projection on the (necessarily closed) range of U, that U^*U is the projection on the ker $(U)^{\perp}$, and that U^* is also a partial isometry.

(Hint: Replacing U by U^* , we see that (b) \iff (c) implies (b) \iff (c) \iff (d). Then use (b)–(d) to prove (a). To prove (c) \implies (b), consider $(UU^*U - U)(UU^*U - U)^*$.)

²A a bounded operator P on a complex Hilbert space \mathcal{H} is called a *projection* if $P = P^* = P^2$. The term *orthogonal projection* or *self-adjoint projection* is, perhaps, more accurate. Note that $\mathcal{M} = P(\mathcal{H})$ is a *closed* subspace of \mathcal{H} and that P is the usual projection with respect to the direct sum decomposition $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$. However, since we are only interested in these sorts of projections, we will settle for the undecorated term "projection."