
Math 123 Homework Assignment #2

Due Monday, April 21, 2008

Part I:

1. Suppose that A is a C∗-algebra.

(a) Suppose that e ∈ A satisfies xe = x for all x ∈ A. Show that e = e∗ and that ‖e‖ = 1.
Conclude that e is a unit for A.

(b) Show that for any x ∈ A, ‖x‖ = sup‖y‖≤1 ‖xy‖. (Do not assume that A has an
approximate identity.)

2. Suppose that A is a Banach algebra with an involution x 7→ x∗ that satisfies ‖x‖2 ≤
‖x∗x‖. Then show that A is a Banach ∗-algebra (i.e., ‖x∗‖ = ‖x‖). In fact, show that A is
a C∗-algebra.

3. Let A1 be the vector space direct sum A ⊕ C with the ∗-algebra structure given by

(a, λ)(b, µ) := (ab + λb + µa, λµ)

(a, λ)∗ := (a∗, λ̄).

Show that there is a norm on A1 making it into a C∗-algebra such that the natural embedding
of A into A1 is isometric. (Hint: If 1 ∈ A, then show that (a, λ) 7→ (a + λ1A, λ) is a ∗-
isomorphism of A1 onto the C∗-algebra direct sum of A and C. If 1 /∈ A, then for each
a ∈ A, let La be the linear operator on A defined by left-multiplication by a: La(x) = ax.
Then show that the collection B of operators on A of the form λI + La is a C∗-algebra with
respect to the operator norm, and that a 7→ La is an isometric ∗-isomorphism.)

4. In this question, ideal always means ‘closed two-sided ideal.’

(a) Suppose that I and J are ideals in a C∗-algebra A. Show that IJ — defined to be the
closed linear span of products from I and J — equals I

⋂
J .

(b) Suppose that J is an ideal in a C∗-algebra A, and that I is an ideal in J . Show that
I is an ideal in A.

–1–



Part II:

5. Suppose that A is a unital C∗-algebra and that f : R → C is continuous. Show that the
map x 7→ f(x) is a continuous map from As.a. = {x ∈ A : x = x∗ } to A.

6. Prove Corollary AA: Show that every separable C∗-algebra contains a sequence which is
an approximate identity. (Recall that we showed in the proof of Theorem Z that if x ∈ As.a.,
and if x ∈ {x1, . . . , xn } = λ, then ‖x − xeλ‖

2 < 1/4n.)

7. Suppose that π : A → B(H) is a representation. Prove that the following are equivalent.

(a) π has no non-trivial closed invariant subspaces; that is, π is irreducible.

(b) The commutant π(A)′ := {T ∈ B(H) : Tπ(a) = π(a)T for all a ∈ A } consists solely
of scalar multiples of the identity; that is π(A)′ = CI.

(c) No non-trivial projection in B(H) commutes with every operator in π(A).

(d) Every vector in H is cyclic for π.

(Suggestions. Observe that π(A)′ is a C∗-algebra. If A ∈ π(A)′s.a. and A 6= αI for some
α ∈ C, then use the Spectral Theorem to produce nonzero operators B1, B2 ∈ π(A)′ with
B1B2 = B2B1 = 0. Observe that the closure of the range of B1 is a non-trivial invariant
subspace for π.)

Part III:

8. As in footnote 1 of problem #8 on the first assignment, use the maximum modulus
theorem to view the disk algebra, A(D), as a Banach subalgebra of C(T).1 Let f ∈ A(D) be
the identity function: f(z) = z for all z ∈ T. Show that σC(T)(f) = T, while σA(D)(f) = D.
This shows that, unlike the case of C∗-algebras where we have “spectral permanence,” we
can have σA(b) a proper subset of σB(b) when B is a unital subalgebra of A.

9. Suppose that U is an bounded operator on a complex Hilbert space H. Show that the
following are equivalent.

1Although it is not relevant to the problem, we can put an involution on C(T), f∗(z) = f(z̄), making
A(D) a Banach ∗-subalgebra of C(T ). You can then check that neither C(T) nor A(D) is a C∗-algebra with
respect to this involution.
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(a) U is isometric on ker(U)⊥.

(b) UU∗U = U .

(c) UU∗ is a projection2.

(d) U∗U is a projection.

An operator in B(H) satisfying (a), and hence (a)–(d), is called a partial isometry on H.
The reason for this terminology ought to be clear from part (a).

Conclude that if U is a partial isometry, then UU∗ is the projection on the (necessarily
closed) range of U , that U∗U is the projection on the ker(U)⊥, and that U∗ is also a partial
isometry.

(Hint: Replacing U by U∗, we see that (b)⇐⇒(c) implies (b)⇐⇒(c)⇐⇒(d). Then use
(b)–(d) to prove (a). To prove (c)=⇒(b), consider (UU∗U − U)(UU∗U − U)∗.)

2A a bounded operator P on a complex Hilbert space H is called a projection if P = P ∗ = P 2. The
term orthogonal projection or self-adjoint projection is, perhaps, more accurate. Note that M = P (H) is
a closed subspace of H and that P is the usual projection with respect to the direct sum decomposition
H = M ⊕ M⊥. However, since we are only interested in these sorts of projections, we will settle for the
undecorated term “projection.”
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