Math 123 Homework Assignment \#2

Due Monday, April 21, 2008

Part I:

1. Suppose that A is a C^{*}-algebra.
(a) Suppose that $e \in A$ satisfies $x e=x$ for all $x \in A$. Show that $e=e^{*}$ and that $\|e\|=1$. Conclude that e is a unit for A.
(b) Show that for any $x \in A,\|x\|=\sup _{\|y\| \leq 1}\|x y\|$. (Do not assume that A has an approximate identity.)
ANS: In part (b), just take $y=\|x\|^{-1} x^{*}$.
2. Suppose that A is a Banach algebra with an involution $x \mapsto x^{*}$ that satisfies $\|x\|^{2} \leq$ $\left\|x^{*} x\right\|$. Then show that A is a Banach $*$-algebra (i.e., $\left\|x^{*}\right\|=\|x\|$). In fact, show that A is a C^{*}-algebra.

ANS: Since A is a Banach algebra, $\|x\|^{2} \leq\left\|x^{*} x\right\| \leq\left\|x^{*}\right\|\|x\|$, which implies that $\|x\| \leq\left\|x^{*}\right\|$. Replacing x by x^{*}, we get $\left\|x^{*}\right\| \leq\left\|x^{* *}\right\|=\|x\|$. Thus, A is a Banach $*$-algebra, and the C^{*}-norm equality follows from the first calculation and that fact that in any Banach $*$-algebra, $\left\|x^{*} x\right\| \leq\|x\|^{2}$.
3. Let I be a set and suppose that for each $i \in I, A_{i}$ is a C^{*}-algebra. Let $\bigoplus_{i \in I} A_{i}$ be the subset of the direct product $\prod_{i \in I} A_{i}$ consisting of those $a \in \prod_{i \in I} A_{i}$ such that $\|a\|:=$ $\sup _{i \in I}\left\|a_{i}\right\|<\infty$. Show that $\left(\bigoplus_{i \in I} A_{i},\|\cdot\|\right)$ is a C^{*}-algebra with respect to the usual pointwise operations:

$$
\begin{aligned}
(a+\lambda b)(i) & :=a(i)+\lambda b(i) \\
(a b)(i) & :=a(i) b(i) \\
a^{*}(i) & :=a(i)^{*} .
\end{aligned}
$$

We call $\bigoplus_{i \in I} A_{i}$ the direct sum of the $\left\{A_{i}\right\}_{i \in I}$.
ANS: The real issue is to see that the direct sum is complete. So suppose that $\left\{a_{n}\right\}$ is Cauchy in $\bigoplus_{i \in I} A_{i}$. Then, clearly, each $\left\{a_{n}(i)\right\}$ is Cauchy in A_{i}, and hence there is $a(i) \in A_{i}$ such that $a_{n}(i) \rightarrow a(i)$. If $\epsilon>0$, choose N so that $n, m \geq N$ imply that $\left\|a_{n}-a_{m}\right\|<\epsilon / 3$. I claim that if $n \geq N$, then $\left\|a_{n}-a\right\|<\epsilon$. This will do the trick.

But for each $i \in N$, there is a $N(i)$ such that $n \geq N(i)$ implies that $\left\|a_{n}(i)-a(i)\right\|<\epsilon / 3$. Then if $n \geq N$, we have

$$
\left\|a_{n}(i)-a(i)\right\| \leq\left\|a_{n}(i)-a_{N(i)}(i)\right\|+\left\|a_{N(i)}(i)-a(i)\right\|<\frac{2 \epsilon}{3} .
$$

But then $n \geq N$ implies that

$$
\sup _{i \in I}\left\|a_{n}(i)-a(i)\right\| \leq \frac{2 \epsilon}{3}<\epsilon
$$

as required.
4. Let A^{1} be the vector space direct sum $A \oplus \mathbb{C}$ with the $*$-algebra structure given by

$$
\begin{aligned}
(a, \lambda)(b, \mu) & :=(a b+\lambda b+\mu a, \lambda \mu) \\
(a, \lambda)^{*} & :=\left(a^{*}, \bar{\lambda}\right)
\end{aligned}
$$

Show that there is a norm on A^{1} making it into a C^{*}-algebra such that the natural embedding of A into A^{1} is isometric. (Hint: If $1 \in A$, then show that $(a, \lambda) \mapsto\left(a+\lambda 1_{A}, \lambda\right)$ is a *isomorphism of A^{1} onto the C^{*}-algebra direct sum of A and \mathbb{C}. If $1 \notin A$, then for each $a \in A$, let L_{a} be the linear operator on A defined by left-multiplication by $a: L_{a}(x)=a x$. Then show that the collection B of operators on A of the form $\lambda I+L_{a}$ is a C^{*}-algebra with respect to the operator norm, and that $a \mapsto L_{a}$ is an isometric $*$-isomorphism.)

ANS: If $1 \in A$, then it is easy to provide an inverse to the given map.
The interesting bit is when A is non-unital to begin with. Since A is complete, $B(A)$ is a Banach algebra with respect to the operator norm. The set $B=\left\{\lambda I+L_{x}: \lambda \in \mathbb{C}, x \in A\right\}$ is clearly a subalgebra which admits an involution: $\left(\lambda I+L_{x}\right)^{*}=\bar{\lambda} I+L_{x^{*}}$. Notice that we have

$$
\left\|L_{x}\right\|=\sup _{\|y\|=1}\|x y\|=\|x\|
$$

(problem 1(b) above). Since $L_{\lambda x}=\lambda L_{x}, L_{(x+y)}=L_{x}+L_{y}, L_{x y}=L_{x} \circ L_{y}$, and $L_{x^{*}}=L_{x}^{*}$, the map $x \mapsto L_{x}$ is an isometric $*$-isomorphism of A onto $B_{0}=\left\{L_{x} \in B(A): x \in A\right\}$. It follows that B_{0} is complete and therefore closed in $B(A)$. Therefore, since $I \notin B_{0}$ (because $e \notin A$) and since the invertible elements in $B(A)$ are open, there is a $\delta>0$ such that $\left\|I-L_{x}\right\| \geq \delta$ for all $x \in A$. So to see that B is also closed, suppose that $\lambda_{n} I+L_{x_{n}} \rightarrow L$ in $B(A)$. Passing to a subsequence and relabeling, we may assume that $\lambda_{n} \neq 0$ for all n. (If infinitely many λ_{n} are zero, then $L \in B_{0}$.) Thus, $\left|\lambda_{n}\right|\left\|I+\lambda_{n}^{-1} L_{x_{n}}\right\| \rightarrow\|L\|$. Since $\left\|I+\lambda_{n}^{-1} L_{x_{n}}\right\| \geq\|\delta\|$, it follows that $\left\{\lambda_{n}\right\}$ must be bounded, and hence must have a convergent subsequence. Therefore $L \in B$, and B is a Banach algebra.

Finally,

$$
\begin{aligned}
\left\|\lambda I+L_{x}\right\|^{2} & =\sup _{\|y\|=1}\|\lambda y+x y\|^{2}=\sup _{\|y\|=1} \|(\lambda y+x y)^{*}((\lambda y+x y) \| \\
& =\sup _{\|y\|=1}\left\|y^{*}\left(\bar{\lambda} I+L_{x^{*}}\right)\left(\left(\lambda I+L_{x}\right)(y)\right)\right\| \leq \sup _{\|y\|=1}\left\|\left(\lambda I+L_{x}\right)^{*}\left(\left(\lambda I+L_{x}\right)(y)\right)\right\| \\
& =\left\|\left(\lambda I+L_{x}\right)^{*}\left(\lambda I+L_{x}\right)\right\| .
\end{aligned}
$$

It now follows from problem 2 that B is a C^{*}-algebra. It is immediate that $(x, \lambda) \mapsto \lambda I+L_{x}$ is an (algebraic) isomorphism of A^{1} onto B (note that you need to use the fact that A in non-unital to see that this map is injective). Of course, $\|(x, \lambda)\|:=\left\|\lambda I+L_{x}\right\|_{B}$ is the required norm on A^{1}.
5. In this question, ideal always means 'closed two-sided ideal.'
(a) Suppose that I and J are ideals in a C^{*}-algebra A. Show that $I J$ - defined to be the closed linear span of products from I and J - equals $I \bigcap J$.
(b) Suppose that J is an ideal in a C^{*}-algebra A, and that I is an ideal in J. Show that I is an ideal in A.

ANS: Clearly $I J \subseteq I \bigcap J$. Suppose $a \in I \bigcap J$, and that $\left\{e_{\alpha}\right\}_{\alpha \in A}$ is an approximate identity for J. Then $a e_{\alpha}$ converges to a in J. On the other hand, for each $\alpha, a e_{\alpha} \in I J$. Thus, $a \in I J$. This proves part (a).

For part (b), consider $a \in A$ and $b \in I$. Again let $\left\{e_{\alpha}\right\}_{\alpha \in A}$ be an approximate identity for J. Then $a b=\lim _{\alpha} a\left(e_{\alpha} b\right)=\lim _{\alpha}\left(a e_{\alpha}\right) b$, and the latter is in I, since I is closed and $a e_{\alpha} \in J$ for all α. This suffices as everything in sight is $*$-closed, so I must be a two-sided ideal in A.

Part II:

6. Suppose that A is a unital C^{*}-algebra and that $f: \mathbb{R} \rightarrow \mathbb{C}$ is continuous. Show that the map $x \mapsto f(x)$ is a continuous map from $A_{\text {s.a. }}=\left\{x \in A: x=x^{*}\right\}$ to A.

ANS: Suppose that $f: \mathbb{R} \rightarrow \mathbb{C}$ is continuous and that $x_{n} \rightarrow x$ in $A_{\text {s.a. }}$. We need to see that $f\left(x_{n}\right) \rightarrow f(x)$ in A. Since we may write $f=f_{1}+i f_{2}$ with f_{i} real-valued and since $f\left(x_{n}\right)=$ $f_{1}\left(x_{n}\right)+i f_{2}\left(x_{n}\right)$, we may as well assume that f itself is real-valued. Furthermore, since addition and multiplication are norm-continuous in A, we certainly have $p\left(x_{n}\right) \rightarrow p(x)$ for any polynomial; this is proved in the same was as one proves that any polynomial is continuous in calculus. Clearly there is a constant $M \in \mathbb{R}^{+}$so that $\left\|x_{n}\right\| \leq M$ for all n. Thus $\rho\left(x_{n}\right) \leq M$ and $\sigma\left(x_{n}\right) \subseteq[-M, M]$ for all n. Similarly, $\sigma(x) \subseteq[-M, M]$ as well. By the Weierstrass approximation theorem, given $\epsilon>0$, there is a polynomial p such that $|f(t)-p(t)|<\epsilon / 3$ for all $t \in[-M, M]$. Thus for each n,

$$
\left\|f\left(x_{n}\right)-p\left(x_{n}\right)\right\|=\sup _{t \in \sigma\left(x_{n}\right)}|f(t)-p(t)|<\epsilon / 3 .
$$

(Notice that $f\left(x_{n}\right)$ is the image of $\left.f\right|_{\sigma\left(x_{n}\right)}$ by the isometric $*$-isomorphism of $C\left(\sigma\left(x_{n}\right)\right)$ onto the abelian C^{*}-subalgebra of A generated by e and x_{n}. Then (\dagger) follows because $f\left(x_{n}\right)-p\left(x_{n}\right)$ is the image of $\left.(f-p)\right|_{\sigma\left(x_{n}\right)}$ which has norm less than $\epsilon / 3$ in $C\left(\sigma\left(x_{n}\right)\right)$ since $\sigma\left(x_{n}\right) \subseteq[-M, M]$.) Of course, (\dagger) holds with x_{n} replaced by x as well. Now choose N so that $n \geq N$ implies that $\left\|p\left(x_{n}\right)-p(x)\right\|<\epsilon / 3$. Therefore for all $n \geq N$,

$$
\left\|f\left(x_{n}\right)-f(x)\right\| \leq\left\|f\left(x_{n}\right)-p\left(x_{n}\right)\right\|+\left\|p\left(x_{n}\right)-p(x)\right\|+\|p(x)-f(x)\|<\epsilon .
$$

The conclusion follows.
7. Prove Corollary AA: Show that every separable C^{*}-algebra contains a sequence which is an approximate identity. (Recall that we showed in the proof of Theorem Z that if $x \in A_{\text {s.a. }}$, and if $x \in\left\{x_{1}, \ldots, x_{n}\right\}=\lambda$, then $\left\|x-x e_{\lambda}\right\|^{2}<1 / 4 n$.)

ANS: Let $\left\{e_{\lambda}\right\}_{\lambda \in \Lambda}$ be the net constructed in the proof of the Theorem. If $D=\left\{x_{k}\right\}_{k=1}^{\infty}$ is dense in $A_{\text {s.a. }}$, then define $e_{n}=e_{\lambda_{n}}$ where $\lambda_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$. Since properties (1)-(3) are clear, we only
need to show that $x e_{n} \rightarrow x$ for all $x \in A$. (This will suffice by taking adjoints.) As we saw in the proof of the Theorem, $\left\|x e_{n}-x\right\|^{2}=\left\|x^{*} x-x^{*} x e_{n}\right\|$, so we may as well assume that $x \in A_{\text {s.a. }}$. But then if $x \in\left\{z_{1}, \ldots, z_{n}\right\}=\lambda$, we have $\left\|x-x e_{\lambda}\right\|^{2} \leq 1 / 4 n$.

So fix $x \in A_{\text {s.a. }}$ and $\epsilon>0$. Choose $y \in D$ such that $\|x-y\|<\epsilon / 3$. Finally, choose N so that $y \in\left\{x_{1}, \ldots, x_{N}\right\}=\lambda_{N}$, and such that $1 / 4 N<\epsilon / 3$. Then, since $\left\|e_{n}\right\| \leq 1, n \geq N$ implies that

$$
\left\|x-x e_{n}\right\| \leq\|x-y\|+\left\|y-y e_{n}\right\|+\left\|y e_{n}-x e_{n}\right\|<\epsilon
$$

This suffices.
8. Suppose that $\pi: A \rightarrow B(\mathcal{H})$ is a representation. Prove that the following are equivalent.
(a) π has no non-trivial closed invariant subspaces; that is, π is irreducible.
(b) The commutant $\pi(A)^{\prime}:=\{T \in B(\mathcal{H}): T \pi(a)=\pi(a) T$ for all $a \in A\}$ consists solely of scalar multiples of the identity; that is $\pi(A)^{\prime}=\mathbb{C} I$.
(c) No non-trivial projection in $B(\mathcal{H})$ commutes with every operator in $\pi(A)$.
(d) Every vector in \mathcal{H} is cyclic for π.
(Suggestions. Observe that $\pi(A)^{\prime}$ is a C^{*}-algebra. If $A \in \pi(A)_{\text {s.a. }}^{\prime}$ and $A \neq \alpha I$ for some $\alpha \in \mathbb{C}$, then use the Spectral Theorem to produce nonzero operators $B_{1}, B_{2} \in \pi(A)^{\prime}$ with $B_{1} B_{2}=B_{2} B_{1}=0$. Observe that the closure of the range of B_{1} is a non-trivial invariant subspace for π.)

ANS: $\quad(a) \Longrightarrow(b)$: Since $\pi(A)^{\prime}$ is a (norm) closed selfadjoint subalgebra of $B(\mathcal{H})$, it is a C^{*}-algebra (a von-Neumann algebra in fact). Therefore, $\pi(A)^{\prime}$ is spanned by its self-adjoint elements. Thus, if $\pi(A)^{\prime}$ does not consist of solely scalar operators, then there is a $T \in \pi(A)_{\text {s.a. }}^{\prime}$ with $\sigma(T)$ not a single point. Thus Urysohn's Lemma implies that there are real-valued functions $f_{1}, f_{2} \in C(\sigma(T))$ of norm one which satisfy $f_{1} f_{2}=0$. Let $B_{i}=f_{i}(T)$ for $i=1,2$. Note that each $B_{i} \in \pi(A)_{\text {s.a. }}^{\prime}$ and $B_{1} B_{2}=B_{2} B_{1}=0$. Let $V=\left[B_{1} \mathcal{H}\right]$. Since $\left\|B_{1}\right\|=1, V \neq\{0\}$. Since $\pi(x) B_{1} \xi=B_{1} \pi(x) \xi$ for all $x \in A$ and $\xi \in \mathcal{H}$, it follows that V is a non-zero closed invariant subspace for π. But since $\left\|B_{2}\right\|=1$, there is an $\eta \in \mathcal{H}$ such that $B_{2} \eta \neq 0$. Yet $\left\langle B_{1} \xi, B_{2} \eta\right\rangle=\left\langle\xi, B_{1} B_{2} \eta\right\rangle=0$ for all $\xi \in \mathcal{H}$. Thus $B_{2} \eta \perp V$, and V is a non-trivial invariant subspace.
$(c) \Longrightarrow(d)$: If $\xi \in \mathcal{H}$ is non-zero, then $V=[\pi(A) \xi]$ is a non-zero, closed invariant subspace for π. Thus it will suffice to prove that the projection P onto any invariant subspace V is in $\pi(A)^{\prime}$. But if V is invariant, then so is V^{\perp}. Thus for any $x \in A$ and any $\xi \in \mathcal{H}$, we have $\pi(x) P \xi \in V$ and $\pi(x)(I-P) \xi \in V^{\perp}$. Thus for all $\xi, \eta \in \mathcal{H},\langle P \pi(x) \xi, \eta\rangle=\langle P \pi(x) P \xi, \eta\rangle+\langle P \pi(x)(I-P) \xi, \eta\rangle=$ $\langle\pi(x) P \xi, \eta\rangle$. This suffices.

The implications $(b) \Longrightarrow(c)$ and $(d) \Longrightarrow(a)$ are immediate.

Part III:

9. As in footnote 1 of problem \#8 on the first assignment, use the maximum modulus theorem to view the disk algebra, $A(D)$, as a Banach subalgebra of $C(\mathbb{T}) .{ }^{1}$ Let $f \in A(D)$ be the identity function: $f(z)=z$ for all $z \in \mathbb{T}$. Show that $\sigma_{C(\mathbb{T})}(f)=\mathbb{T}$, while $\sigma_{A(D)}(f)=\bar{D}$. This shows that, unlike the case of C^{*}-algebras where we have "spectral permanence," we can have $\sigma_{A}(b)$ a proper subset of $\sigma_{B}(b)$ when B is a unital subalgebra of A.

ANS: The spectrum of any element of $C(X)$ is simply its range, so we immediately have $\sigma_{C(\mathbb{T})}(f)=$ \mathbb{T}. But $\lambda-f$ is invertible in $A(D)$ only when $(\lambda-f)^{-1}$ has an analytic extension to D, but if $\lambda \in D$, then this is impossible since

$$
\int_{|z|=1} \frac{1}{\lambda-z} d z=2 \pi i \quad \text { if } \lambda \in D .
$$

On the other hand, if $|\lambda|>1$, then $\lambda-f$ is clearly in $G(A(D))$. Therefore $\sigma_{A(D)}(f)=\bar{D}$ as claimed.
10. Suppose that U is an bounded operator on a complex Hilbert space \mathcal{H}. Show that the following are equivalent.
(a) U is isometric on $\operatorname{ker}(U)^{\perp}$.
(b) $U U^{*} U=U$.
(c) $U U^{*}$ is a projection ${ }^{2}$.
(d) $U^{*} U$ is a projection.

An operator in $B(\mathcal{H})$ satisfying (a), and hence (a)-(d), is called a partial isometry on \mathcal{H}. The reason for this terminology ought to be clear from part (a).

Conclude that if U is a partial isometry, then $U U^{*}$ is the projection on the (necessarily closed) range of U, that $U^{*} U$ is the projection on the $\operatorname{ker}(U)^{\perp}$, and that U^{*} is also a partial isometry.

[^0](Hint: Replacing U by U^{*}, we see that $(\mathrm{b}) \Longleftrightarrow(\mathrm{c})$ implies $(\mathrm{b}) \Longleftrightarrow(\mathrm{c}) \Longleftrightarrow(\mathrm{d})$. Then use (b)-(d) to prove (a). To prove $(\mathrm{c}) \Longrightarrow(\mathrm{b})$, consider $\left(U U^{*} U-U\right)\left(U U^{*} U-U\right)^{*}$.)

ANS: That (b) implies (c) is easy. To see that (c) implies (b), note that $\left(U U^{*} U-U\right)\left(U U^{*} U-U\right)^{*}=$ $\left(U U^{*}\right)^{3}-2\left(U U^{*}\right)^{2}+U U^{*}$, which is zero. But in a C^{*}-algebra, $x^{*} x=0$ implies that $x=0$. Therefore $U U^{*} U-U=0$.

Now replacing U by U^{*} gives us the fact that (b), (c), and (d) are equivalent.
But if $U^{*} U$ is a projection, then the range of $U^{*} U$ is exactly $\operatorname{ker}\left(U^{*} U\right)^{\perp}$. I claim $\operatorname{ker}\left(T^{*} T\right)=$ $\operatorname{ker}(T)$ for any bounded operator. Obviously, $\operatorname{ker}(T) \subseteq \operatorname{ker}\left(T^{*} T\right)$. On the other hand, if $T^{*} T(x)=0$, then $\left\langle T^{*} T x, x\right\rangle=0=\langle T x, T x\rangle=|T x|^{2}$. This proves the claim.

It follows from the previous paragraph that if $x \in \operatorname{ker}(U)^{\perp}$, then $U^{*} U x=x$. But then $|U x|^{2}=$ $\langle U x, U x\rangle=\left\langle U^{*} U x, x\right\rangle=\langle x, x\rangle=|x|^{2}$. Thus, (d) implies (a).

Finally, if (a) holds, then the polarization identity implies that $\langle U x, U y\rangle=\langle x, y\rangle$ for all $x, y \in$ $\operatorname{ker}(U)^{\perp}$. Now suppose $x \in \operatorname{ker}(U)^{\perp}$. On the one hand, $z \in \operatorname{ker}(U)^{\perp}$ implies that $\left\langle U^{*} U x, z\right\rangle=$ $\langle U x, U z\rangle=\langle x, z\rangle$. While on the other hand, $z \in \operatorname{ker}(U)$ implies that $\left\langle U^{*} U x, z\right\rangle=\langle U x, U z\rangle=$ $0=\langle x, z\rangle$. We have shown that $\left\langle U^{*} U x, y\right\rangle=\langle x, y\rangle$ for all $y \in \mathcal{H}$ and $x \in \operatorname{ker}(U)^{\perp}$; therefore the restriction of $U^{*} U$ to $\operatorname{ker}(U)^{\perp}$ is the identity. But $U^{*} U$ is certainly zero on $\operatorname{ker}(U)$. In other words, $U^{*} U$ is the projection onto $\operatorname{ker}(U)^{\perp}$, and (a) implies (d).

Of course we just proved above that if U is partial isometry, then $U^{*} U$ is the projection onto $\operatorname{ker}(U)^{\perp}$. I'm glad everyone (eventually anyway) realized this is what I meant. Sorry if you wasted time here. Of course, taking adjoints in part (b) shows that U^{*} is a partial isometry, so $U U^{*}=$ $U^{* *} U^{*}$ is the projection onto $\operatorname{ker}\left(U^{*}\right)^{\perp}$. It is standard nonsense that, for any bounded operator $T, \operatorname{ker}\left(T^{*}\right)=T(\mathcal{H})^{\perp}$ (see, for example, Analysis Now, 3.2.5). Thus, $U U^{*}$ is the projection onto $\operatorname{ker}\left(U^{*}\right)^{\perp}$, which is the closure of the range of U. However, the range of U is the isometric image of the closed, hence complete, subspace $\operatorname{ker}(U)^{\perp}$. Thus the range of U is complete, and therefore, closed. Thus, $U U^{*}$ is the projection onto the range of U as claimed.

[^0]: ${ }^{1}$ Although it is not relevant to the problem, we can put an involution on $C(\mathbb{T}), f^{*}(z)=\overline{f(\bar{z})}$, making $A(D)$ a Banach $*$-subalgebra of $C(T)$. You can then check that neither $C(\mathbb{T})$ nor $A(D)$ is a C^{*}-algebra with respect to this involution.
 ${ }^{2} \mathrm{~A}$ a bounded operator P on a complex Hilbert space \mathcal{H} is called a projection if $P=P^{*}=P^{2}$. The term orthogonal projection or self-adjoint projection is, perhaps, more accurate. Note that $\mathcal{M}=P(\mathcal{H})$ is a closed subspace of \mathcal{H} and that P is the usual projection with respect to the direct sum decomposition $\mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}$. However, since we are only interested in these sorts of projections, we will settle for the undecorated term "projection."

