Math 123 Homework Assignment #2 Due Monday, April 21, 2008

Part I:

- 1. Suppose that A is a C^* -algebra.
 - (a) Suppose that $e \in A$ satisfies xe = x for all $x \in A$. Show that $e = e^*$ and that ||e|| = 1. Conclude that e is a unit for A.
 - (b) Show that for any $x \in A$, $||x|| = \sup_{||y|| \le 1} ||xy||$. (Do not assume that A has an approximate identity.)

ANS: In part (b), just take $y = ||x||^{-1}x^*$.

2. Suppose that A is a Banach algebra with an involution $x \mapsto x^*$ that satisfies $||x||^2 \leq ||x^*x||$. Then show that A is a Banach *-algebra (i.e., $||x^*|| = ||x||$). In fact, show that A is a C*-algebra.

ANS: Since A is a Banach algebra, $||x||^2 \le ||x^*x|| \le ||x^*|| ||x||$, which implies that $||x|| \le ||x^*||$. Replacing x by x^* , we get $||x^*|| \le ||x^{**}|| = ||x||$. Thus, A is a Banach *-algebra, and the C*-norm equality follows from the first calculation and that fact that in any Banach *-algebra, $||x^*x|| \le ||x||^2$.

3. Let *I* be a set and suppose that for each $i \in I$, A_i is a C^* -algebra. Let $\bigoplus_{i \in I} A_i$ be the subset of the direct product $\prod_{i \in I} A_i$ consisting of those $a \in \prod_{i \in I} A_i$ such that $||a|| := \sup_{i \in I} ||a_i|| < \infty$. Show that $(\bigoplus_{i \in I} A_i, || \cdot ||)$ is a C^* -algebra with respect to the usual pointwise operations:

$$(a + \lambda b)(i) := a(i) + \lambda b(i)$$

 $(ab)(i) := a(i)b(i)$
 $a^{*}(i) := a(i)^{*}.$

We call $\bigoplus_{i \in I} A_i$ the *direct sum* of the $\{A_i\}_{i \in I}$.

ANS: The real issue is to see that the direct sum is complete. So suppose that $\{a_n\}$ is Cauchy in $\bigoplus_{i \in I} A_i$. Then, clearly, each $\{a_n(i)\}$ is Cauchy in A_i , and hence there is $a(i) \in A_i$ such that $a_n(i) \to a(i)$. If $\epsilon > 0$, choose N so that $n, m \ge N$ imply that $||a_n - a_m|| < \epsilon/3$. I claim that if $n \ge N$, then $||a_n - a|| < \epsilon$. This will do the trick.

But for each $i \in N$, there is a N(i) such that $n \ge N(i)$ implies that $||a_n(i) - a(i)|| < \epsilon/3$. Then if $n \ge N$, we have

$$||a_n(i) - a(i)|| \le ||a_n(i) - a_{N(i)}(i)|| + ||a_{N(i)}(i) - a(i)|| < \frac{2\epsilon}{3}.$$

But then $n \ge N$ implies that

$$\sup_{i \in I} \|a_n(i) - a(i)\| \le \frac{2\epsilon}{3} < \epsilon$$

as required.

4. Let A^1 be the vector space direct sum $A \oplus \mathbb{C}$ with the *-algebra structure given by

$$(a, \lambda)(b, \mu) := (ab + \lambda b + \mu a, \lambda \mu)$$

 $(a, \lambda)^* := (a^*, \overline{\lambda}).$

Show that there is a norm on A^1 making it into a C^* -algebra such that the natural embedding of A into A^1 is isometric. (Hint: If $1 \in A$, then show that $(a, \lambda) \mapsto (a + \lambda 1_A, \lambda)$ is a *isomorphism of A^1 onto the C^* -algebra direct sum of A and \mathbb{C} . If $1 \notin A$, then for each $a \in A$, let L_a be the linear operator on A defined by left-multiplication by a: $L_a(x) = ax$. Then show that the collection B of operators on A of the form $\lambda I + L_a$ is a C^* -algebra with respect to the operator norm, and that $a \mapsto L_a$ is an isometric *-isomorphism.)

ANS: If $1 \in A$, then it is easy to provide an inverse to the given map.

The interesting bit is when A is non-unital to begin with. Since A is complete, B(A) is a Banach algebra with respect to the operator norm. The set $B = \{\lambda I + L_x : \lambda \in \mathbb{C}, x \in A\}$ is clearly a subalgebra which admits an involution: $(\lambda I + L_x)^* = \overline{\lambda}I + L_{x^*}$. Notice that we have

$$||L_x|| = \sup_{||y||=1} ||xy|| = ||x||$$

(problem 1(b) above). Since $L_{\lambda x} = \lambda L_x$, $L_{(x+y)} = L_x + L_y$, $L_{xy} = L_x \circ L_y$, and $L_{x^*} = L_x^*$, the map $x \mapsto L_x$ is an isometric *-isomorphism of A onto $B_0 = \{L_x \in B(A) : x \in A\}$. It follows that B_0 is complete and therefore closed in B(A). Therefore, since $I \notin B_0$ (because $e \notin A$) and since the invertible elements in B(A) are open, there is a $\delta > 0$ such that $||I - L_x|| \ge \delta$ for all $x \in A$. So to see that B is also closed, suppose that $\lambda_n I + L_{x_n} \to L$ in B(A). Passing to a subsequence and relabeling, we may assume that $\lambda_n \neq 0$ for all n. (If infinitely many λ_n are zero, then $L \in B_0$.) Thus, $|\lambda_n|||I + \lambda_n^{-1}L_{x_n}|| \to ||L||$. Since $||I + \lambda_n^{-1}L_{x_n}|| \ge ||\delta||$, it follows that $\{\lambda_n\}$ must be bounded, and hence must have a convergent subsequence. Therefore $L \in B$, and B is a Banach algebra. Finally,

$$\begin{aligned} \|\lambda I + L_x\|^2 &= \sup_{\|y\|=1} \|\lambda y + xy\|^2 = \sup_{\|y\|=1} \|(\lambda y + xy)^* ((\lambda y + xy))\| \\ &= \sup_{\|y\|=1} \|y^* (\overline{\lambda} I + L_{x^*}) ((\lambda I + L_x)(y))\| \le \sup_{\|y\|=1} \|(\lambda I + L_x)^* ((\lambda I + L_x)(y))\| \\ &= \|(\lambda I + L_x)^* (\lambda I + L_x)\|. \end{aligned}$$

It now follows from problem 2 that B is a C*-algebra. It is immediate that $(x, \lambda) \mapsto \lambda I + L_x$ is an (algebraic) isomorphism of A^1 onto B (note that you need to use the fact that A in non-unital to see that this map is injective). Of course, $||(x, \lambda)|| := ||\lambda I + L_x||_B$ is the required norm on A^1 .

5. In this question, ideal always means 'closed two-sided ideal.'

- (a) Suppose that I and J are ideals in a C^* -algebra A. Show that IJ defined to be the closed linear span of products from I and J equals $I \cap J$.
- (b) Suppose that J is an ideal in a C^* -algebra A, and that I is an ideal in J. Show that I is an ideal in A.

ANS: Clearly $IJ \subseteq I \bigcap J$. Suppose $a \in I \bigcap J$, and that $\{e_{\alpha}\}_{\alpha \in A}$ is an approximate identity for J. Then ae_{α} converges to a in J. On the other hand, for each α , $ae_{\alpha} \in IJ$. Thus, $a \in IJ$. This proves part (a).

For part (b), consider $a \in A$ and $b \in I$. Again let $\{e_{\alpha}\}_{\alpha \in A}$ be an approximate identity for J. Then $ab = \lim_{\alpha} a(e_{\alpha}b) = \lim_{\alpha} (ae_{\alpha})b$, and the latter is in I, since I is closed and $ae_{\alpha} \in J$ for all α . This suffices as everything in sight is *-closed, so I must be a two-sided ideal in A.

Part II:

6. Suppose that A is a unital C^{*}-algebra and that $f : \mathbb{R} \to \mathbb{C}$ is continuous. Show that the map $x \mapsto f(x)$ is a continuous map from $A_{\text{s.a.}} = \{x \in A : x = x^*\}$ to A.

ANS: Suppose that $f : \mathbb{R} \to \mathbb{C}$ is continuous and that $x_n \to x$ in $A_{\text{s.a.}}$. We need to see that $f(x_n) \to f(x)$ in A. Since we may write $f = f_1 + if_2$ with f_i real-valued and since $f(x_n) = f_1(x_n) + if_2(x_n)$, we may as well assume that f itself is real-valued. Furthermore, since addition and multiplication are norm-continuous in A, we certainly have $p(x_n) \to p(x)$ for any polynomial; this is proved in the same was as one proves that any polynomial is continuous in calculus. Clearly there is a constant $M \in \mathbb{R}^+$ so that $||x_n|| \leq M$ for all n. Thus $\rho(x_n) \leq M$ and $\sigma(x_n) \subseteq [-M, M]$ for all n. Similarly, $\sigma(x) \subseteq [-M, M]$ as well. By the Weierstrass approximation theorem, given $\epsilon > 0$, there is a polynomial p such that $|f(t) - p(t)| < \epsilon/3$ for all $t \in [-M, M]$. Thus for each n,

$$\|f(x_n) - p(x_n)\| = \sup_{t \in \sigma(x_n)} |f(t) - p(t)| < \epsilon/3.$$
(†)

(Notice that $f(x_n)$ is the image of $f|_{\sigma(x_n)}$ by the isometric *-isomorphism of $C(\sigma(x_n))$ onto the abelian C*-subalgebra of A generated by e and x_n . Then (†) follows because $f(x_n) - p(x_n)$ is the image of $(f-p)|_{\sigma(x_n)}$ which has norm less than $\epsilon/3$ in $C(\sigma(x_n))$ since $\sigma(x_n) \subseteq [-M, M]$.) Of course, (†) holds with x_n replaced by x as well. Now choose N so that $n \geq N$ implies that $||p(x_n) - p(x)|| < \epsilon/3$. Therefore for all $n \geq N$,

$$||f(x_n) - f(x)|| \le ||f(x_n) - p(x_n)|| + ||p(x_n) - p(x)|| + ||p(x) - f(x)|| < \epsilon$$

The conclusion follows.

7. Prove Corollary AA: Show that every separable C^* -algebra contains a sequence which is an approximate identity. (Recall that we showed in the proof of Theorem Z that if $x \in A_{\text{s.a.}}$, and if $x \in \{x_1, \ldots, x_n\} = \lambda$, then $||x - xe_{\lambda}||^2 < 1/4n$.)

ANS: Let $\{e_{\lambda}\}_{\lambda \in \Lambda}$ be the net constructed in the proof of the Theorem. If $D = \{x_k\}_{k=1}^{\infty}$ is dense in $A_{\text{s.a.}}$, then define $e_n = e_{\lambda_n}$ where $\lambda_n = \{x_1, \ldots, x_n\}$. Since properties (1)–(3) are clear, we only need to show that $xe_n \to x$ for all $x \in A$. (This will suffice by taking adjoints.) As we saw in the proof of the Theorem, $||xe_n - x||^2 = ||x^*x - x^*xe_n||$, so we may as well assume that $x \in A_{\text{s.a.}}$. But then if $x \in \{z_1, \ldots, z_n\} = \lambda$, we have $||x - xe_\lambda||^2 \le 1/4n$.

So fix $x \in A_{\text{s.a.}}$ and $\epsilon > 0$. Choose $y \in D$ such that $||x - y|| < \epsilon/3$. Finally, choose N so that $y \in \{x_1, \ldots, x_N\} = \lambda_N$, and such that $1/4N < \epsilon/3$. Then, since $||e_n|| \le 1$, $n \ge N$ implies that

$$||x - xe_n|| \le ||x - y|| + ||y - ye_n|| + ||ye_n - xe_n|| < \epsilon.$$

This suffices.

- 8. Suppose that $\pi: A \to B(\mathcal{H})$ is a representation. Prove that the following are equivalent.
 - (a) π has no non-trivial closed invariant subspaces; that is, π is irreducible.
 - (b) The commutant $\pi(A)' := \{ T \in B(\mathcal{H}) : T\pi(a) = \pi(a)T \text{ for all } a \in A \}$ consists solely of scalar multiples of the identity; that is $\pi(A)' = \mathbb{C}I$.
 - (c) No non-trivial projection in $B(\mathcal{H})$ commutes with every operator in $\pi(A)$.
 - (d) Every vector in \mathcal{H} is cyclic for π .

(Suggestions. Observe that $\pi(A)'$ is a C^* -algebra. If $A \in \pi(A)'_{\text{s.a.}}$ and $A \neq \alpha I$ for some $\alpha \in \mathbb{C}$, then use the Spectral Theorem to produce nonzero operators $B_1, B_2 \in \pi(A)'$ with $B_1B_2 = B_2B_1 = 0$. Observe that the closure of the range of B_1 is a non-trivial invariant subspace for π .)

ANS: $(a) \Longrightarrow (b)$: Since $\pi(A)'$ is a (norm) closed selfadjoint subalgebra of $B(\mathcal{H})$, it is a C*-algebra (a von-Neumann algebra in fact). Therefore, $\pi(A)'$ is spanned by its self-adjoint elements. Thus, if $\pi(A)'$ does not consist of solely scalar operators, then there is a $T \in \pi(A)'_{\text{s.a.}}$ with $\sigma(T)$ not a single point. Thus Urysohn's Lemma implies that there are real-valued functions $f_1, f_2 \in C(\sigma(T))$ of norm one which satisfy $f_1 f_2 = 0$. Let $B_i = f_i(T)$ for i = 1, 2. Note that each $B_i \in \pi(A)'_{\text{s.a.}}$ and $B_1 B_2 = B_2 B_1 = 0$. Let $V = [B_1 \mathcal{H}]$. Since $||B_1|| = 1$, $V \neq \{0\}$. Since $\pi(x) B_1 \xi = B_1 \pi(x) \xi$ for all $x \in A$ and $\xi \in \mathcal{H}$, it follows that V is a non-zero closed invariant subspace for π . But since $||B_2|| = 1$, there is an $\eta \in \mathcal{H}$ such that $B_2 \eta \neq 0$. Yet $\langle B_1 \xi, B_2 \eta \rangle = \langle \xi, B_1 B_2 \eta \rangle = 0$ for all $\xi \in \mathcal{H}$. Thus $B_2 \eta \perp V$, and V is a non-trivial invariant subspace.

 $(c) \Longrightarrow (d)$: If $\xi \in \mathcal{H}$ is non-zero, then $V = [\pi(A)\xi]$ is a non-zero, closed invariant subspace for π . Thus it will suffice to prove that the projection P onto any invariant subspace V is in $\pi(A)'$. But if V is invariant, then so is V^{\perp} . Thus for any $x \in A$ and any $\xi \in \mathcal{H}$, we have $\pi(x)P\xi \in V$ and $\pi(x)(I-P)\xi \in V^{\perp}$. Thus for all $\xi, \eta \in \mathcal{H}, \langle P\pi(x)\xi, \eta \rangle = \langle P\pi(x)P\xi, \eta \rangle + \langle P\pi(x)(I-P)\xi, \eta \rangle = \langle \pi(x)P\xi, \eta \rangle$. This suffices.

The implications $(b) \Longrightarrow (c)$ and $(d) \Longrightarrow (a)$ are immediate.

Part III:

9. As in footnote 1 of problem #8 on the first assignment, use the maximum modulus theorem to view the disk algebra, A(D), as a Banach subalgebra of $C(\mathbb{T})$.¹ Let $f \in A(D)$ be the identity function: f(z) = z for all $z \in \mathbb{T}$. Show that $\sigma_{C(\mathbb{T})}(f) = \mathbb{T}$, while $\sigma_{A(D)}(f) = \overline{D}$. This shows that, unlike the case of C^* -algebras where we have "spectral permanence," we can have $\sigma_A(b)$ a proper subset of $\sigma_B(b)$ when B is a unital subalgebra of A.

ANS: The spectrum of any element of C(X) is simply its range, so we immediately have $\sigma_{C(\mathbb{T})}(f) = \mathbb{T}$. But $\lambda - f$ is invertible in A(D) only when $(\lambda - f)^{-1}$ has an analytic extension to D, but if $\lambda \in D$, then this is impossible since

$$\int_{|z|=1} \frac{1}{\lambda - z} \, dz = 2\pi i \quad \text{if } \lambda \in D.$$

On the other hand, if $|\lambda| > 1$, then $\lambda - f$ is clearly in G(A(D)). Therefore $\sigma_{A(D)}(f) = \overline{D}$ as claimed.

10. Suppose that U is an bounded operator on a complex Hilbert space \mathcal{H} . Show that the following are equivalent.

- (a) U is isometric on $\ker(U)^{\perp}$.
- (b) $UU^*U = U$.
- (c) UU^* is a projection².
- (d) U^*U is a projection.

An operator in $B(\mathcal{H})$ satisfying (a), and hence (a)–(d), is called a *partial isometry* on \mathcal{H} . The reason for this terminology ought to be clear from part (a).

Conclude that if U is a partial isometry, then UU^* is the projection on the (necessarily closed) range of U, that U^*U is the projection on the ker $(U)^{\perp}$, and that U^* is also a partial isometry.

¹Although it is not relevant to the problem, we can put an involution on $C(\mathbb{T})$, $f^*(z) = \overline{f(\overline{z})}$, making A(D) a Banach *-subalgebra of C(T). You can then check that neither $C(\mathbb{T})$ nor A(D) is a C^* -algebra with respect to this involution.

²A a bounded operator P on a complex Hilbert space \mathcal{H} is called a *projection* if $P = P^* = P^2$. The term *orthogonal projection* or *self-adjoint projection* is, perhaps, more accurate. Note that $\mathcal{M} = P(\mathcal{H})$ is a *closed* subspace of \mathcal{H} and that P is the usual projection with respect to the direct sum decomposition $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$. However, since we are only interested in these sorts of projections, we will settle for the undecorated term "projection."

(Hint: Replacing U by U^* , we see that (b) \iff (c) implies (b) \iff (c) \iff (d). Then use (b)-(d) to prove (a). To prove (c) \implies (b), consider $(UU^*U - U)(UU^*U - U)^*$.)

ANS: That (b) implies (c) is easy. To see that (c) implies (b), note that $(UU^*U-U)(UU^*U-U)^* = (UU^*)^3 - 2(UU^*)^2 + UU^*$, which is zero. But in a C^* -algebra, $x^*x = 0$ implies that x = 0. Therefore $UU^*U - U = 0$.

Now replacing U by U^* gives us the fact that (b), (c), and (d) are equivalent.

But if U^*U is a projection, then the range of U^*U is exactly $\ker(U^*U)^{\perp}$. I claim $\ker(T^*T) = \ker(T)$ for any bounded operator. Obviously, $\ker(T) \subseteq \ker(T^*T)$. On the other hand, if $T^*T(x) = 0$, then $\langle T^*Tx, x \rangle = 0 = \langle Tx, Tx \rangle = |Tx|^2$. This proves the claim.

It follows from the previous paragraph that if $x \in \ker(U)^{\perp}$, then $U^*Ux = x$. But then $|Ux|^2 = \langle Ux, Ux \rangle = \langle U^*Ux, x \rangle = \langle x, x \rangle = |x|^2$. Thus, (d) implies (a).

Finally, if (a) holds, then the polarization identity implies that $\langle Ux, Uy \rangle = \langle x, y \rangle$ for all $x, y \in \ker(U)^{\perp}$. Now suppose $x \in \ker(U)^{\perp}$. On the one hand, $z \in \ker(U)^{\perp}$ implies that $\langle U^*Ux, z \rangle = \langle Ux, Uz \rangle = \langle x, z \rangle$. While on the other hand, $z \in \ker(U)$ implies that $\langle U^*Ux, z \rangle = \langle Ux, Uz \rangle = 0 = \langle x, z \rangle$. We have shown that $\langle U^*Ux, y \rangle = \langle x, y \rangle$ for all $y \in \mathcal{H}$ and $x \in \ker(U)^{\perp}$; therefore the restriction of U^*U to $\ker(U)^{\perp}$ is the identity. But U^*U is certainly zero on $\ker(U)$. In other words, U^*U is the projection onto $\ker(U)^{\perp}$, and (a) implies (d).

Of course we just proved above that if U is partial isometry, then U^*U is the projection onto $\ker(U)^{\perp}$. I'm glad everyone (eventually anyway) realized this is what I meant. Sorry if you wasted time here. Of course, taking adjoints in part (b) shows that U^* is a partial isometry, so $UU^* = U^{**}U^*$ is the projection onto $\ker(U^*)^{\perp}$. It is standard nonsense that, for any bounded operator T, $\ker(T^*) = T(\mathcal{H})^{\perp}$ (see, for example, *Analysis Now*, 3.2.5). Thus, UU^* is the projection onto $\ker(U^*)^{\perp}$, which is the closure of the range of U. However, the range of U is the isometric image of the closed, hence complete, subspace $\ker(U)^{\perp}$. Thus the range of U is complete, and therefore, closed. Thus, UU^* is the projection onto the range of U as claimed.