
Math 123 Homework Assignment #2

Due Monday, April 21, 2008

Part I:

1. Suppose that A is a C∗-algebra.

(a) Suppose that e ∈ A satisfies xe = x for all x ∈ A. Show that e = e∗ and that ‖e‖ = 1.
Conclude that e is a unit for A.

(b) Show that for any x ∈ A, ‖x‖ = sup‖y‖≤1 ‖xy‖. (Do not assume that A has an
approximate identity.)

ANS: In part (b), just take y = ‖x‖−1x∗.

2. Suppose that A is a Banach algebra with an involution x 7→ x∗ that satisfies ‖x‖2 ≤
‖x∗x‖. Then show that A is a Banach ∗-algebra (i.e., ‖x∗‖ = ‖x‖). In fact, show that A is
a C∗-algebra.

ANS: Since A is a Banach algebra, ‖x‖2 ≤ ‖x∗x‖ ≤ ‖x∗‖ ‖x‖, which implies that ‖x‖ ≤ ‖x∗‖.
Replacing x by x∗, we get ‖x∗‖ ≤ ‖x∗∗‖ = ‖x‖. Thus, A is a Banach ∗-algebra, and the C∗-norm
equality follows from the first calculation and that fact that in any Banach ∗-algebra, ‖x∗x‖ ≤ ‖x‖2.

3. Let I be a set and suppose that for each i ∈ I, Ai is a C∗-algebra. Let
⊕

i∈I Ai be
the subset of the direct product

∏

i∈I Ai consisting of those a ∈
∏

i∈I Ai such that ‖a‖ :=
supi∈I ‖ai‖ < ∞. Show that

(
⊕

i∈I Ai, ‖ · ‖
)

is a C∗-algebra with respect to the usual
pointwise operations:

(a + λb)(i) := a(i) + λb(i)

(ab)(i) := a(i)b(i)

a∗(i) := a(i)∗.

We call
⊕

i∈I Ai the direct sum of the {Ai }i∈I .

ANS: The real issue is to see that the direct sum is complete. So suppose that { an } is Cauchy
in

⊕

i∈I Ai. Then, clearly, each { an(i) } is Cauchy in Ai, and hence there is a(i) ∈ Ai such that
an(i) → a(i). If ǫ > 0, choose N so that n,m ≥ N imply that ‖an − am‖ < ǫ/3. I claim that if
n ≥ N , then ‖an − a‖ < ǫ. This will do the trick.

But for each i ∈ N , there is a N(i) such that n ≥ N(i) implies that ‖an(i) − a(i)‖ < ǫ/3. Then
if n ≥ N , we have

‖an(i) − a(i)‖ ≤ ‖an(i) − aN(i)(i)‖ + ‖aN(i)(i) − a(i)‖ <
2ǫ

3
.
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But then n ≥ N implies that

sup
i∈I

‖an(i) − a(i)‖ ≤
2ǫ

3
< ǫ

as required.

4. Let A1 be the vector space direct sum A ⊕ C with the ∗-algebra structure given by

(a, λ)(b, µ) := (ab + λb + µa, λµ)

(a, λ)∗ := (a∗, λ̄).

Show that there is a norm on A1 making it into a C∗-algebra such that the natural embedding
of A into A1 is isometric. (Hint: If 1 ∈ A, then show that (a, λ) 7→ (a + λ1A, λ) is a ∗-
isomorphism of A1 onto the C∗-algebra direct sum of A and C. If 1 /∈ A, then for each
a ∈ A, let La be the linear operator on A defined by left-multiplication by a: La(x) = ax.
Then show that the collection B of operators on A of the form λI + La is a C∗-algebra with
respect to the operator norm, and that a 7→ La is an isometric ∗-isomorphism.)

ANS: If 1 ∈ A, then it is easy to provide an inverse to the given map.
The interesting bit is when A is non-unital to begin with. Since A is complete, B(A) is a Banach

algebra with respect to the operator norm. The set B = {λI + Lx : λ ∈ C, x ∈ A } is clearly a
subalgebra which admits an involution: (λI + Lx)∗ = λI + Lx∗ . Notice that we have

‖Lx‖ = sup
‖y‖=1

‖xy‖ = ‖x‖

(problem 1(b) above). Since Lλx = λLx, L(x+y) = Lx + Ly, Lxy = Lx ◦ Ly, and Lx∗ = L∗
x, the map

x 7→ Lx is an isometric ∗-isomorphism of A onto B0 = {Lx ∈ B(A) : x ∈ A }. It follows that B0

is complete and therefore closed in B(A). Therefore, since I /∈ B0 (because e /∈ A) and since the
invertible elements in B(A) are open, there is a δ > 0 such that ‖I − Lx‖ ≥ δ for all x ∈ A . So
to see that B is also closed, suppose that λnI + Lxn

→ L in B(A). Passing to a subsequence and
relabeling, we may assume that λn 6= 0 for all n. (If infinitely many λn are zero, then L ∈ B0.)
Thus, |λn|‖I + λ−1

n Lxn
‖ → ‖L‖. Since ‖I + λ−1

n Lxn
‖ ≥ ‖δ‖, it follows that {λn } must be bounded,

and hence must have a convergent subsequence. Therefore L ∈ B, and B is a Banach algebra.
Finally,

‖λI + Lx‖
2 = sup

‖y‖=1

‖λy + xy‖2 = sup
‖y‖=1

‖(λy + xy)∗((λy + xy)‖

= sup
‖y‖=1

‖y∗(λI + Lx∗)
(

(λI + Lx)(y)
)

‖ ≤ sup
‖y‖=1

‖(λI + Lx)∗
(

(λI + Lx)(y)
)

‖

= ‖(λI + Lx)∗(λI + Lx)‖.

It now follows from problem 2 that B is a C*-algebra. It is immediate that (x, λ) 7→ λI + Lx is an
(algebraic) isomorphism of A1 onto B (note that you need to use the fact that A in non-unital to
see that this map is injective). Of course, ‖(x, λ)‖ := ‖λI + Lx‖B is the required norm on A1.

5. In this question, ideal always means ‘closed two-sided ideal.’
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(a) Suppose that I and J are ideals in a C∗-algebra A. Show that IJ — defined to be the
closed linear span of products from I and J — equals I

⋂

J .

(b) Suppose that J is an ideal in a C∗-algebra A, and that I is an ideal in J . Show that
I is an ideal in A.

ANS: Clearly IJ ⊆ I
⋂

J . Suppose a ∈ I
⋂

J , and that { eα }α∈A is an approximate identity for
J . Then aeα converges to a in J . On the other hand, for each α, aeα ∈ IJ . Thus, a ∈ IJ . This
proves part (a).

For part (b), consider a ∈ A and b ∈ I. Again let { eα }α∈A be an approximate identity for J .
Then ab = limα a(eαb) = limα(aeα)b, and the latter is in I, since I is closed and aeα ∈ J for all α.
This suffices as everything in sight is ∗-closed, so I must be a two-sided ideal in A.

Part II:

6. Suppose that A is a unital C∗-algebra and that f : R → C is continuous. Show that the
map x 7→ f(x) is a continuous map from As.a. = {x ∈ A : x = x∗ } to A.

ANS: Suppose that f : R → C is continuous and that xn → x in As.a.. We need to see that
f(xn) → f(x) in A. Since we may write f = f1 + if2 with fi real-valued and since f(xn) =
f1(xn) + if2(xn), we may as well assume that f itself is real-valued. Furthermore, since addition
and multiplication are norm-continuous in A, we certainly have p(xn) → p(x) for any polynomial;
this is proved in the same was as one proves that any polynomial is continuous in calculus. Clearly
there is a constant M ∈ R

+ so that ‖xn‖ ≤ M for all n. Thus ρ(xn) ≤ M and σ(xn) ⊆ [−M,M ] for
all n. Similarly, σ(x) ⊆ [−M,M ] as well. By the Weierstrass approximation theorem, given ǫ > 0,
there is a polynomial p such that |f(t) − p(t)| < ǫ/3 for all t ∈ [−M,M ]. Thus for each n,

‖f(xn) − p(xn)‖ = sup
t∈σ(xn)

|f(t) − p(t)| < ǫ/3. (†)

(Notice that f(xn) is the image of f |σ(xn) by the isometric ∗-isomorphism of C
(

σ(xn)
)

onto the
abelian C*-subalgebra of A generated by e and xn. Then (†) follows because f(xn) − p(xn) is
the image of (f − p)|σ(xn) which has norm less than ǫ/3 in C

(

σ(xn)
)

since σ(xn) ⊆ [−M,M ].)
Of course, (†) holds with xn replaced by x as well. Now choose N so that n ≥ N implies that
‖p(xn) − p(x)‖ < ǫ/3. Therefore for all n ≥ N ,

‖f(xn) − f(x)‖ ≤ ‖f(xn) − p(xn)‖ + ‖p(xn) − p(x)‖ + ‖p(x) − f(x)‖ < ǫ.

The conclusion follows.

7. Prove Corollary AA: Show that every separable C∗-algebra contains a sequence which is
an approximate identity. (Recall that we showed in the proof of Theorem Z that if x ∈ As.a.,
and if x ∈ {x1, . . . , xn } = λ, then ‖x − xeλ‖

2 < 1/4n.)

ANS: Let { eλ }λ∈Λ be the net constructed in the proof of the Theorem. If D = {xk }
∞
k=1 is dense

in As.a., then define en = eλn
where λn = {x1, . . . , xn }. Since properties (1)–(3) are clear, we only
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need to show that xen → x for all x ∈ A. (This will suffice by taking adjoints.) As we saw in the
proof of the Theorem, ‖xen − x‖2 = ‖x∗x − x∗xen‖, so we may as well assume that x ∈ As.a.. But
then if x ∈ { z1, . . . , zn } = λ, we have ‖x − xeλ‖

2 ≤ 1/4n.
So fix x ∈ As.a. and ǫ > 0. Choose y ∈ D such that ‖x − y‖ < ǫ/3. Finally, choose N so that

y ∈ {x1, . . . , xN } = λN , and such that 1/4N < ǫ/3. Then, since ‖en‖ ≤ 1, n ≥ N implies that

‖x − xen‖ ≤ ‖x − y‖ + ‖y − yen‖ + ‖yen − xen‖ < ǫ.

This suffices.

8. Suppose that π : A → B(H) is a representation. Prove that the following are equivalent.

(a) π has no non-trivial closed invariant subspaces; that is, π is irreducible.

(b) The commutant π(A)′ := {T ∈ B(H) : Tπ(a) = π(a)T for all a ∈ A } consists solely
of scalar multiples of the identity; that is π(A)′ = CI.

(c) No non-trivial projection in B(H) commutes with every operator in π(A).

(d) Every vector in H is cyclic for π.

(Suggestions. Observe that π(A)′ is a C∗-algebra. If A ∈ π(A)′s.a. and A 6= αI for some
α ∈ C, then use the Spectral Theorem to produce nonzero operators B1, B2 ∈ π(A)′ with
B1B2 = B2B1 = 0. Observe that the closure of the range of B1 is a non-trivial invariant
subspace for π.)

ANS: (a) =⇒ (b): Since π(A)′ is a (norm) closed selfadjoint subalgebra of B(H), it is a C*-algebra
(a von-Neumann algebra in fact). Therefore, π(A)′ is spanned by its self-adjoint elements. Thus,
if π(A)′ does not consist of solely scalar operators, then there is a T ∈ π(A)′s.a. with σ(T ) not a
single point. Thus Urysohn’s Lemma implies that there are real-valued functions f1, f2 ∈ C

(

σ(T )
)

of norm one which satisfy f1f2 = 0. Let Bi = fi(T ) for i = 1, 2. Note that each Bi ∈ π(A)′s.a.

and B1B2 = B2B1 = 0. Let V = [B1H]. Since ‖B1‖ = 1, V 6= { 0 }. Since π(x)B1ξ = B1π(x)ξ
for all x ∈ A and ξ ∈ H, it follows that V is a non-zero closed invariant subspace for π. But since
‖B2‖ = 1, there is an η ∈ H such that B2η 6= 0. Yet 〈B1ξ,B2η〉 = 〈ξ,B1B2η〉 = 0 for all ξ ∈ H.
Thus B2η ⊥ V , and V is a non-trivial invariant subspace.

(c) =⇒ (d): If ξ ∈ H is non-zero, then V = [π(A)ξ] is a non-zero, closed invariant subspace for
π. Thus it will suffice to prove that the projection P onto any invariant subspace V is in π(A)′.
But if V is invariant, then so is V ⊥. Thus for any x ∈ A and any ξ ∈ H, we have π(x)Pξ ∈ V
and π(x)(I − P )ξ ∈ V ⊥. Thus for all ξ, η ∈ H, 〈Pπ(x)ξ, η〉 = 〈Pπ(x)Pξ, η〉 + 〈Pπ(x)(I − P )ξ, η〉 =
〈π(x)Pξ, η〉. This suffices.

The implications (b) =⇒ (c) and (d) =⇒ (a) are immediate.
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Part III:

9. As in footnote 1 of problem #8 on the first assignment, use the maximum modulus
theorem to view the disk algebra, A(D), as a Banach subalgebra of C(T).1 Let f ∈ A(D) be
the identity function: f(z) = z for all z ∈ T. Show that σC(T)(f) = T, while σA(D)(f) = D.
This shows that, unlike the case of C∗-algebras where we have “spectral permanence,” we
can have σA(b) a proper subset of σB(b) when B is a unital subalgebra of A.

ANS: The spectrum of any element of C(X) is simply its range, so we immediately have σC(T)(f) =
T. But λ−f is invertible in A(D) only when (λ−f)−1 has an analytic extension to D, but if λ ∈ D,
then this is impossible since

∫

|z|=1

1

λ − z
dz = 2πi if λ ∈ D.

On the other hand, if |λ| > 1, then λ−f is clearly in G
(

A(D)
)

. Therefore σA(D)(f) = D as claimed.

10. Suppose that U is an bounded operator on a complex Hilbert space H. Show that the
following are equivalent.

(a) U is isometric on ker(U)⊥.

(b) UU∗U = U .

(c) UU∗ is a projection2.

(d) U∗U is a projection.

An operator in B(H) satisfying (a), and hence (a)–(d), is called a partial isometry on H.
The reason for this terminology ought to be clear from part (a).

Conclude that if U is a partial isometry, then UU∗ is the projection on the (necessarily
closed) range of U , that U∗U is the projection on the ker(U)⊥, and that U∗ is also a partial
isometry.

1Although it is not relevant to the problem, we can put an involution on C(T), f∗(z) = f(z̄), making
A(D) a Banach ∗-subalgebra of C(T ). You can then check that neither C(T) nor A(D) is a C∗-algebra with
respect to this involution.

2A a bounded operator P on a complex Hilbert space H is called a projection if P = P ∗ = P 2. The
term orthogonal projection or self-adjoint projection is, perhaps, more accurate. Note that M = P (H) is
a closed subspace of H and that P is the usual projection with respect to the direct sum decomposition
H = M ⊕ M⊥. However, since we are only interested in these sorts of projections, we will settle for the
undecorated term “projection.”
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(Hint: Replacing U by U∗, we see that (b)⇐⇒(c) implies (b)⇐⇒(c)⇐⇒(d). Then use
(b)–(d) to prove (a). To prove (c)=⇒(b), consider (UU∗U − U)(UU∗U − U)∗.)

ANS: That (b) implies (c) is easy. To see that (c) implies (b), note that (UU∗U−U)(UU∗U−U)∗ =
(UU∗)3−2(UU∗)2 +UU∗, which is zero. But in a C∗-algebra, x∗x = 0 implies that x = 0. Therefore
UU∗U − U = 0.

Now replacing U by U∗ gives us the fact that (b), (c), and (d) are equivalent.
But if U∗U is a projection, then the range of U∗U is exactly ker(U∗U)⊥. I claim ker(T ∗T ) =

ker(T ) for any bounded operator. Obviously, ker(T ) ⊆ ker(T ∗T ). On the other hand, if T ∗T (x) = 0,
then 〈T ∗Tx, x〉 = 0 = 〈Tx, Tx〉 = |Tx|2. This proves the claim.

It follows from the previous paragraph that if x ∈ ker(U)⊥, then U∗Ux = x. But then |Ux|2 =
〈Ux,Ux〉 = 〈U∗Ux, x〉 = 〈x, x〉 = |x|2. Thus, (d) implies (a).

Finally, if (a) holds, then the polarization identity implies that 〈Ux,Uy〉 = 〈x, y〉 for all x, y ∈
ker(U)⊥. Now suppose x ∈ ker(U)⊥. On the one hand, z ∈ ker(U)⊥ implies that 〈U∗Ux, z〉 =
〈Ux,Uz〉 = 〈x, z〉. While on the other hand, z ∈ ker(U) implies that 〈U∗Ux, z〉 = 〈Ux,Uz〉 =
0 = 〈x, z〉. We have shown that 〈U∗Ux, y〉 = 〈x, y〉 for all y ∈ H and x ∈ ker(U)⊥; therefore the
restriction of U∗U to ker(U)⊥ is the identity. But U∗U is certainly zero on ker(U). In other words,
U∗U is the projection onto ker(U)⊥, and (a) implies (d).

Of course we just proved above that if U is partial isometry, then U∗U is the projection onto
ker(U)⊥. I’m glad everyone (eventually anyway) realized this is what I meant. Sorry if you wasted
time here. Of course, taking adjoints in part (b) shows that U∗ is a partial isometry, so UU∗ =
U∗∗U∗ is the projection onto ker(U∗)⊥. It is standard nonsense that, for any bounded operator
T , ker(T ∗) = T (H)⊥ (see, for example, Analysis Now, 3.2.5). Thus, UU∗ is the projection onto
ker(U∗)⊥, which is the closure of the range of U . However, the range of U is the isometric image
of the closed, hence complete, subspace ker(U)⊥. Thus the range of U is complete, and therefore,
closed. Thus, UU∗ is the projection onto the range of U as claimed.
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