Math 123 Homework Assignment #2
Due Monday, April 21, 2008

Part I:

1. Suppose that A is a C*-algebra.

(a) Suppose that e € A satisfies xe = x for all € A. Show that e = ¢* and that ||e]| = 1.
Conclude that e is a unit for A.

ow that for any z € A, ||x|| = sup zY||. 0 not assume that as an
approximate identity.)

ANS: In part (b), just take y = ||z| ~tz*.

2. Suppose that A is a Banach algebra with an involution z — z* that satisfies ||z|> <
|z*z||. Then show that A is a Banach %-algebra (i.e., |z*|| = ||=||). In fact, show that A is
a (C*-algebra.
ANS: Since A is a Banach algebra, ||z||?> < |z*x| < ||2*|||z||, which implies that ||z| < [|z*|.
Replacing x by z*, we get ||z*| < ||**|| = ||z||. Thus, A is a Banach *-algebra, and the C*-norm
equality follows from the first calculation and that fact that in any Banach *-algebra, ||z*x| < ||z|?.

3. Let I be a set and suppose that for each ¢ € I, A; is a C*-algebra. Let @, ; A; be
the subset of the direct product [],.; A; consisting of those a € [],.; A; such that ||a] :=
sup;e; |la;|] < oo. Show that (€D,c; 4| - ||) is a C*-algebra with respect to the usual
pointwise operations:
(a+ Ab)(i) := a(i) + \b(7)
(ab)(3) := ali)b(s)

a*(i) := a(i)

We call ,.; A; the direct sum of the { A; }ier.

ANS: The real issue is to see that the direct sum is complete. So suppose that { a, } is Cauchy
in @,c; Ai- Then, clearly, each {a,(i)} is Cauchy in A;, and hence there is a(i) € A; such that
an(i) — a(i). If € > 0, choose N so that n,m > N imply that ||a, — an| < €/3. I claim that if
n > N, then |la, — a|| < e. This will do the trick.

But for each i € N, there is a N () such that n > N(4) implies that ||a, (i) — a(?)|| < €/3. Then
if n > N, we have

llan (@) — a(@i)|| < llan (i) = an ) (@) + lan ) (@) — a(@)] < =
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But then n > N implies that

. . 2¢
sup [lan(i) — (i) < 5 < ¢
el

as required.

4. Let A' be the vector space direct sum A @ C with the x-algebra structure given by

(a, \)(b, ) := (ab + b+ pra, M)
(a, \)* == (a", \).

Show that there is a norm on A' making it into a C*-algebra such that the natural embedding
of A into A' is isometric. (Hint: If 1 € A, then show that (a,\) — (a + A4, ) is a *-
isomorphism of A' onto the C*-algebra direct sum of A and C. If 1 ¢ A, then for each
a € A, let L, be the linear operator on A defined by left-multiplication by a: L,(x) = ax.
Then show that the collection B of operators on A of the form A + L, is a C*-algebra with
respect to the operator norm, and that a — L, is an isometric *-isomorphism.)

ANS: If 1€ A, then it is easy to provide an inverse to the given map.

The interesting bit is when A is non-unital to begin with. Since A is complete, B(A) is a Banach
algebra with respect to the operator norm. The set B = {A + L, : A € C,z € A} is clearly a
subalgebra which admits an involution: (A + L;)* = Al + L,~. Notice that we have

[Lall = sup [lzy|| = |||
lyll=1

(problem 1(b) above). Since Lxy = ALy, L(y4y) = Lz + Ly, Loy = Ly 0 Ly, and Ly- = L}, the map
x +— L, is an isometric *-isomorphism of A onto By = { L, € B(A) : x € A}. It follows that By
is complete and therefore closed in B(A). Therefore, since I ¢ By (because e ¢ A) and since the
invertible elements in B(A) are open, there is a 6 > 0 such that || — L,|| > d for all z € A . So
to see that B is also closed, suppose that A\, + L, — L in B(A). Passing to a subsequence and
relabeling, we may assume that A, # 0 for all n. (If infinitely many A, are zero, then L € By.)
Thus, |An||[I + A, Le, || — ||L]|- Since ||[I + A\, Ly, || > ||5]], it follows that { A, } must be bounded,
and hence must have a convergent subsequence. Therefore L € B, and B is a Banach algebra.

Finally,
M+ Ly ||* = l‘zt”l:pl Ay + zy||> = “21”11231 [(Ay + 2y)" (Ay + zy)||
= sup 19" (A + Ly ) (M + La) () || < Sup (M + Ly)* (M + La)(y) |
= (AL + Lz)" (M + La)|-

It now follows from problem 2 that B is a C*-algebra. It is immediate that (x, A) — A + L, is an
(algebraic) isomorphism of A! onto B (note that you need to use the fact that A in non-unital to
see that this map is injective). Of course, ||(z, )| := ||\l + L. || is the required norm on A*.

5. In this question, ideal always means ‘closed two-sided ideal.’
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(a) Suppose that I and J are ideals in a C*-algebra A. Show that [.J — defined to be the
closed linear span of products from / and J — equals I J.

(b) Suppose that J is an ideal in a C*-algebra A, and that [ is an ideal in J. Show that
I is an ideal in A.

ANS: Clearly IJ C I J. Suppose a € I[)J, and that { e, }aca is an approximate identity for
J. Then ae, converges to a in J. On the other hand, for each «, ae, € IJ. Thus, a € IJ. This
proves part (a).

For part (b), consider a € A and b € I. Again let { e, }aca be an approximate identity for J.
Then ab = lim,, a(eqb) = lim, (aey )b, and the latter is in I, since I is closed and ae,, € J for all a.
This suffices as everything in sight is *-closed, so I must be a two-sided ideal in A.

Part II:

6. Suppose that A is a unital C*-algebra and that f : R — C is continuous. Show that the
map z — f(x) is a continuous map from As, ={xr € A:z ="} to A.
ANS: Suppose that f : R — C is continuous and that z,, — x in Ag.. We need to see that
flxz,) — f(x) in A. Since we may write f = f; + ifs with f; real-valued and since f(z,) =
fi(xn) + ifa(zy,), we may as well assume that f itself is real-valued. Furthermore, since addition
and multiplication are norm-continuous in A, we certainly have p(x,) — p(x) for any polynomial;
this is proved in the same was as one proves that any polynomial is continuous in calculus. Clearly
there is a constant M € R* so that ||z,| < M for all n. Thus p(x,) < M and o(z,,) C [-M, M| for
all n. Similarly, o(x) C [-M, M| as well. By the Weierstrass approximation theorem, given ¢ > 0,
there is a polynomial p such that |f(t) — p(t)| < ¢/3 for all t € [-M, M]. Thus for each n,

1/ (@n) = p(zn)ll = sup [f() —p(t)] <e€/3. (1)

(Notice that f(z,) is the image of f|y(;,) by the isometric s-isomorphism of C(o(xy)) onto the
abelian C*-subalgebra of A generated by e and z,. Then (f) follows because f(z,) — p(z,) is
the image of (f — p)|y(z,) Which has norm less than €/3 in C(o(z,)) since o(z,) C [-M, M].)
Of course, (f) holds with x,, replaced by = as well. Now choose N so that n > N implies that
lp(zn) — p(z)|| < €/3. Therefore for all n > N,

1 (@n) = F@)| < |[f(zn) = ()] + [[p(2n) = p(@)]| + [Ip(x) = f2)]| <e

The conclusion follows.

7. Prove Corollary AA: Show that every separable C*-algebra contains a sequence which is
an approximate identity. (Recall that we showed in the proof of Theorem Z that if = € Aq.,,
and if v € {x1,...,7, } = A, then ||z — zey||* < 1/4n.)

ANS: Let {e) }rea be the net constructed in the proof of the Theorem. If D = { z }?2; is dense
in Ag.,., then define e, = ey, where A, = {z1,...,2, }. Since properties (1)—(3) are clear, we only
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need to show that ze, — x for all z € A. (This will suffice by taking adjoints.) As we saw in the
proof of the Theorem, ||ze, — z||? = ||z*x — z*ze, ||, so we may as well assume that x € Ag, . But
then if z € { 21,..., 2, } = A, we have ||z — ze,||? < 1/4n.

So fix € A, and € > 0. Choose y € D such that ||z — y|| < €/3. Finally, choose N so that
y €{x1,...,2n } = Ay, and such that 1/4N < /3. Then, since |le,|| < 1, n > N implies that

[z — zenll < llz =yl + ly — yenll + llyen — zen| <e.

This suffices.

8. Suppose that 7 : A — B('H) is a representation. Prove that the following are equivalent.
(a) 7 has no non-trivial closed invariant subspaces; that is, 7 is irreducible.

(b) The commutant m(A) := {T € B(H) : Tw(a) = w(a)T for all a € A} consists solely
of scalar multiples of the identity; that is 7(A)" = CI.

(c¢) No non-trivial projection in B(H) commutes with every operator in 7(A).
(d) Every vector in H is cyclic for .

(Suggestions. Observe that w(A)" is a C*-algebra. If A € 7(A)., and A # «al for some

s.a.

a € C, then use the Spectral Theorem to produce nonzero operators By, By € 7(A)" with
BBy = BBy = 0. Observe that the closure of the range of By is a non-trivial invariant
subspace for 7.)

ANS: (a) = (b): Since 7(A)’ is a (norm) closed selfadjoint subalgebra of B(H), it is a C*-algebra
(a von-Neumann algebra in fact). Therefore, 7(A)" is spanned by its self-adjoint elements. Thus,
if w(A)" does not consist of solely scalar operators, then there is a T € w(A)., with ¢(T) not a
single point. Thus Urysohn’s Lemma implies that there are real-valued functions f1, fo € C (U(T))
of norm one which satisfy fifo = 0. Let B; = f;(T) for ¢ = 1,2. Note that each B; € w(A). .
and B1Bs = ByB; = 0. Let V = [ByH]. Since ||B1]| =1, V # {0}. Since n(z)B1§ = Bym(z)¢
for all x € A and £ € H, it follows that V is a non-zero closed invariant subspace for m. But since
| B2|| = 1, there is an n € H such that Ban # 0. Yet (B1&, Ban) = (£, B1Ban) = 0 for all £ € H.
Thus Ban LV, and V is a non-trivial invariant subspace.

(¢) = (d): If £ € H is non-zero, then V = [w(A)¢&] is a non-zero, closed invariant subspace for
m. Thus it will suffice to prove that the projection P onto any invariant subspace V is in m(A)’.
But if V is invariant, then so is V*. Thus for any x € A and any & € H, we have m(z)P¢ € V
and 7(z)(I — P)¢ € VL. Thus for all &, € H, (Pr(z)¢,n) = (Pr(x) P&, n) + (Pr(z)(I — P)¢,n) =
(m(x) P&, n). This suffices.

The implications (b) = (¢) and (d) = (a) are immediate.



Part III:

9. As in footnote 1 of problem #8 on the first assignment, use the maximum modulus

theorem to view the disk algebra, A(D), as a Banach subalgebra of C(T).! Let f € A(D) be
the identity function: f(z) = z for all z € T. Show that oc(r)(f) = T, while o4p)(f) = D.
This shows that, unlike the case of C*-algebras where we have “spectral permanence,” we
can have g 4(b) a proper subset of o5(b) when B is a unital subalgebra of A.

ANS: The spectrum of any element of C'(X) is simply its range, so we immediately have o¢ry(f) =
T. But A— f is invertible in A(D) only when (A — f)~! has an analytic extension to D, but if A € D,

then this is impossible since
1
/ dz=2mi if A€ D.
|z|=1 A—z

On the other hand, if [A] > 1, then A — f is clearly in G(A(D)). Therefore o 4(p)(f) = D as claimed.

10. Suppose that U is an bounded operator on a complex Hilbert space H. Show that the
following are equivalent.

(
(

a) U is isometric on ker(U)*.

b) UU*U =U.

)
)
(c) UU* is a projection?.
(d) U*U is a projection.
An operator in B(H) satisfying (a), and hence (a)—(d), is called a partial isometry on H.
The reason for this terminology ought to be clear from part (a).

Conclude that if U is a partial isometry, then UU* is the projection on the (necessarily

closed) range of U, that U*U is the projection on the ker(U)+, and that U* is also a partial
isometry.

L Although it is not relevant to the problem, we can put an involution on C(T), f*(2) = f(2), making
A(D) a Banach x-subalgebra of C(T). You can then check that neither C(T) nor A(D) is a C*-algebra with
respect to this involution.

2A a bounded operator P on a complex Hilbert space H is called a projection if P = P* = P2. The
term orthogonal projection or self-adjoint projection is, perhaps, more accurate. Note that M = P(H) is
a closed subspace of H and that P is the usual projection with respect to the direct sum decomposition
H = M @ M+. However, since we are only interested in these sorts of projections, we will settle for the
undecorated term “projection.”



(Hint: Replacing U by U*, we see that (b)<=>(c) implies (b)<=(c)<=>(d). Then use
(b)—(d) to prove (a). To prove (¢)==(b), consider (UU*U — U)(UU*U — U)*.)

ANS: That (b) implies (c) is easy. To see that (c) implies (b), note that (UU*U—-U)(UU*U-U)* =
(UU*)3—2(UU*)2+UU*, which is zero. But in a C*-algebra, x*z = 0 implies that x = 0. Therefore
vu*U —-U =0.

Now replacing U by U* gives us the fact that (b), (¢), and (d) are equivalent.

But if U*U is a projection, then the range of U*U is exactly ker(U*U)*. I claim ker(T*T) =
ker(T") for any bounded operator. Obviously, ker(T") C ker(7T*T"). On the other hand, if T*T'(z) = 0,
then (T*Tx,z) =0 = (Tx,Tx) = |Tz|?. This proves the claim.

It follows from the previous paragraph that if x € ker(U)*, then U*Uz = z. But then |Uz|? =
(Uz,Uz) = (U*Uz,x) = (z,x) = |x|>. Thus, (d) implies (a).

Finally, if (a) holds, then the polarization identity implies that (Ux,Uy) = (x,y) for all z,y €
ker(U)+. Now suppose x € ker(U)L. On the one hand, 2z € ker(U)* implies that (U*Uz,z) =
(Uz,Uz) = (x,z). While on the other hand, z € ker(U) implies that (U*Uz,z) = (Uz,Uz) =
0 = (z,2). We have shown that (U*Ux,y) = (z,y) for all y € H and z € ker(U)*; therefore the
restriction of U*U to ker(U)* is the identity. But U*U is certainly zero on ker(U). In other words,
U*U is the projection onto ker(U)*, and (a) implies (d).

Of course we just proved above that if U is partial isometry, then U*U is the projection onto
ker(U)*. I'm glad everyone (eventually anyway) realized this is what I meant. Sorry if you wasted
time here. Of course, taking adjoints in part (b) shows that U* is a partial isometry, so UU* =
U**U* is the projection onto ker(U*)*. It is standard nonsense that, for any bounded operator
T, ker(T*) = T(H)* (see, for example, Analysis Now, 3.2.5). Thus, UU* is the projection onto
ker(U*)*, which is the closure of the range of U. However, the range of U is the isometric image
of the closed, hence complete, subspace ker(U)+. Thus the range of U is complete, and therefore,
closed. Thus, UU* is the projection onto the range of U as claimed.



