Math 123 Homework Assignment #1 Due Friday, April 11th

Part I:

1. Let X be a normed vector space and suppose that S and X are bounded linear operators on X. Show that $||ST|| \leq ||S|| ||T||$.

2. Let X be a locally compact Hausdorff space. Show that $C_0(X)$ is a closed subalgebra of $C^b(X)$.

3. Let A be a unital Banach algebra. Show that $x \mapsto x^{-1}$ is continuous from G(A) to G(A). (Use the hint given in lecture.)

Part II:

4. Suppose that X is a compact Hausdorff space. If E is a closed subset of X, define I(E) to be the ideal in C(X) of functions which vanish on E.

- (a) Let J be a closed ideal in C(X) and let $E = \{x \in X : f(x) = 0 \text{ for all } f \in J\}$. Prove that if U is an open neighborhood of E in X, then there is a $f \in J$ such that f(x) = 1 for all x in the compact set $X \setminus U$.
- (b) Conclude that J = I(E) in part (a), and hence, conclude that *every closed* ideal in C(X) has the form I(E) for some closed subset E of X.

ANS: Fix $x_0 \in X \setminus U$. By definition of E, there is a $f_{x_0} \in J$ with $f_{x_0}(x_0) \neq 0$. Since $|f|^2 = \overline{f}f \in J$ if $f \in J$, we may as well assume that $f_{x_0}(x) \geq 0$ for all $x \in X$, and since J is a subalgebra, we may also assume that $f_{x_0}(x_0) > 1$. Since $X \setminus U$ is compact, there are $x_1, \ldots, x_n \in X$ so that $f = \sum_k f_{x_k}$ satisfies $f \in J$ and f(x) > 1 for all $x \in X \setminus U$. Observe that $g = \min(1, 1/f)$ is in $C(X)^1$. Since $fg \in J$, we are done with part (a).

Notice that we have proved a bit more than required in part (a): namely there is a $f \in J$ such that $0 \leq f(x) \leq 1$ for all $x \in X$ and f(x) = 1 for all $x \in E$. Thus if h is any function in I(E) and $\epsilon > 0$, then $U = \{x \in X : |h(x)| > \epsilon\}$ is a neighborhood of E in X. Then we can choose $f \in J$ as above and $||fh - h||_{\infty} < \epsilon$. Thus $h \in \overline{J} = J$. This suffices as we have $J \subseteq I(E)$ by definition.

¹If $a, b \in C(X)$, then so are min(a, b) = (a+b)/2 - |a-b|/2 and max(a, b) = (a+b)/2 + |a-b|/2. In the above, we can replace f by max(f, 1/2) without altering g.

Remark: Notice that we have established a 1-1 correspondence between the closed subsets E of X and the closed ideals J of C(X): it follows immediately from Urysohn's Lemma² that if E is closed and $x \notin E$, then there is a $f \in I(E)$ with $f(x) \neq 0$. Thus $I(E) \neq I(F)$ if E and F are distinct closed sets.

5. Suppose that X is a (non-compact) locally compact Hausdorff space. Let X^+ be the *one-point compactification* of X (also called the Alexandroff compactification: see [Kelly; Theorem 5.21]). Recall that $X^+ = X \cup \{\infty\}$ with $U \subseteq X^+$ open if and only if either U is an open subset of X or $X^+ \setminus U$ is a *compact* subset of X.

(a) Show that $f \in C(X)$ belongs to $C_0(X)$ if and only if the extension

$$\tilde{f}(\tilde{x}) = \begin{cases} f(\tilde{x}) & \text{if } \tilde{x} \in X, \text{ and} \\ 0 & \text{if } \tilde{x} = \infty. \end{cases}$$

is continuous on X^+ .

(b) Conclude that $C_0(X)$ can be identified with the maximal ideal of $C(X^+)$ consisting of functions which 'vanish at ∞ .'

ANS: Suppose \tilde{f} is continuous at $x = \infty$, and that $\epsilon > 0$. Then $U = \{ \tilde{x} \in X^+ : |\tilde{f}(\tilde{x})| < \epsilon \}$ is an open neighborhood of ∞ in X^+ . But then $X \setminus U$ is compact; but that means $\{ x \in X : |f(x)| \ge \epsilon \}$ is compact. That is, $f \in C_0(X)$ as required.

For the converse, suppose that $f \in C_0(X)$, and that V is open in \mathbb{C} . If $0 \notin V$, then $\tilde{f}^{-1}(V) = f^{-1}(V)$ is open in X, and therefore, open in X^+ . On the other hand, if $0 \in V$, then there is a $\epsilon > 0$ so that $\{z \in \mathbb{C} : |z| < \epsilon\} \subseteq V$. Thus, $X^+ \setminus \tilde{f}^{-1}(V) = \{x \in X : f(x) \notin V\} \bigcap \{x \in X : |f(x)| \ge \epsilon\}$. Since the first set is closed and the second compact, $X^+ \setminus \tilde{f}^{-1}(V)$ is a compact subset of X, and $\tilde{f}^{-1}(V)$ is a open neighborhood of ∞ in X^+ . This proves part (a).

Part (b) is immediate: each $f \in C_0(X)$ has a (unique) extension to a function in $C(X^+)$ and this identifies $C_0(X)$ with the ideal $I(\{\infty\})$ in $C(X^+)$. In view of question 4 above, $I(\{\infty\})$ is maximal among closed ideals in $C(X^+)$, and, as maximal ideals are automatically closed, maximal among all proper ideals.

6. Use the above to establish the following ideal theorem for $C_0(X)$.

Theorem: Suppose that X is a locally compact Hausdorff space. Then every closed ideal J in $C_0(X)$ is of the form

$$J = \{ f \in C_0(X) : f(x) = 0 \text{ for all } x \in E \}$$

 $^{^2 {\}rm For}$ a reference, see Pedersen's Analysis Now: Theorems 1.5.6 and 1.6.6 or, more generally, Proposition 1.7.5.

for some closed subset E of X.

ANS: Suppose that J is a closed ideal in $C_0(X)$. Then J is, in view of question 5(b) above, a closed subalgebra of $C(X^+)$. I claim the result will follow once it is observed that J is actually an ideal in $C(X^+)$. In that case, $J = I(E \cup \{\infty\})$, where $E \subseteq X$ is such that $E \cup \{\infty\}$ is closed in X^+ . Thus $X^+ \setminus (E \cup \{\infty\}) = X \setminus E$ is open in X, and E is closed in X.

The easy way to verify the claim, is to observe that, in view of the fact that $C_0(X)$ is a maximal ideal in $C(X^+)$, $C(X^+) = \{f + \lambda : f \in C_0(X) \text{ and } \lambda \in \mathbb{C} \}$. (Here $\lambda \in \mathbb{C}$ is identified with the constant function on X^+ .) Then, since J is an algebra, $f(g + \lambda) = fg + \lambda f$ belongs to J whenever f does.

Part III:

7. Assume you remember enough measure theory to show that if $f, g \in L^1([0,1])$, then

$$f * g(t) = \int_0^t f(t-s)g(s) \, ds$$
 (1)

exists for almost all $t \in [0, 1]$, and defines an element of $L^1([0, 1])$. Let A be the algebra consisting of the Banach space $L^1([0, 1])$ with multiplication defined by (1).

- (a) Conclude that A is a commutative Banach algebra: that is, show that f * g = g * f, and that $||f * g||_1 \le ||f||_1 ||g||_1$.
- (b) Let f_0 be the constant function $f_0(t) = 1$ for all $t \in [0, 1]$. Show that

$$f_0^n(t) := f_0 * \dots * f_0(t) = t^{n-1}/(n-1)!,$$
 (2)

and hence,

$$\|f_0^n\|_1 = \frac{1}{n!}.$$
(3)

- (c) Show that (2) implies that f_0 generates A as a Banach algebra: that is, alg(f) is norm dense. Conclude from (3) that the spectral radius $\rho(f)$ is zero for all $f \in A$.
- (d) Conclude that A has no nonzero complex homomorphisms.

ANS: First compute that³

$$\|f * g\|_{1} = \int_{0}^{1} |f * g(t)| dt$$
$$\leq \int_{0}^{1} \int_{0}^{t} |f(t-s)g(s)| ds dt$$

which, using Tonelli's Theorem, is

$$\begin{split} &= \int_0^1 |g(s)| \Big(\int_s^1 |f(t-s)| \, dt \Big) \, ds \\ &= \int_0^1 |g(s)| \Big(\int_0^{1-s} |f(u)| \, du \Big) \, ds \\ &\leq \|f\|_1 \|g\|_1. \end{split}$$

To show that f * g = g * f it suffices, in view of the above, to consider continuous functions. Thus, the usual calculus techniques apply. In particular,

$$f * g(t) = \int_0^t f(t-s)g(s) \, ds$$

= $-\int_t^0 f(u)g(t-u) \, du = g * f(t).$

This proves (a). However, (b) is a simple induction argument.

Now for (c): the calculation (2) shows that $alg(f_0)$ contains all polynomials. Since the polynomials are uniformly dense in C[0, 1], and the later is dense in L^1 , we can conclude that $alg(f_0)$ is norm dense.

Next, observe that (3) not only implies that $\rho(f_0) = 0$, but that $\rho(f_0^k) = 0$ as well for any positive integer k. However, it is not immediately clear that every element of $\operatorname{alg}(f_0)$ has spectral radius zero. However, there is an easy way to see this. Let \widetilde{A} be the unitalization of A (i.e., $\widetilde{A} := A \oplus \mathbb{C}$), and recall that $a \in A$ has spectral radius zero (a is called *quasi-nilpotent*) if and only if $\widetilde{h}(a) = 0$ for all $\widetilde{h} \in \widetilde{\Delta} = \Delta(\widetilde{A})$. Since each \widetilde{h} is a continuous algebra homomorphism, $\operatorname{ker}(\widetilde{h})$ is a closed ideal in \widetilde{A} , and it follows that the collection of quasi-nilpotent elements is actually a *closed ideal* of A given by⁴

$$\operatorname{rad}(A) = \bigcap_{\tilde{h} \in \widetilde{\Delta}} \ker(\tilde{h}).$$

³For a reference for Tonelli's Theorem (the 'uselful' version of Fubini's Theorem), see [Analysis Now, Corollary 6.6.8], or much better, see Royden's Real Analysis. On the other hand, if you are worried about the calculus style manipulation of limits, consider the integrand

$$F(s,t) = \begin{cases} |f(t-s)g(s)| & \text{if } 0 \le s \le t \le 1, \text{ and} \\ 0 & \text{otherwise.} \end{cases}$$

⁴This result is of interest in its own right. Note that A is always a maximal ideal in \widetilde{A} , and so rad(A) is always contained in A itself.

Since each f_0^k is in rad(A), so is the *closed* algebra (in fact, the closed ideal) generated by f_0 . Thus, rad(A) = A in this case, which is what was to be shown.

Of course, (d) is an immediate consequence of (c): if $\rho \in \Delta(A)$, then by definition there is a $f \in A$ such that $\rho(f) \neq 0$. But then $\rho(f) \geq |h(f)| > 0$, which contradicts the fact that rad(A) = A.

8. Here we want to give an example of a unital commutative Banach algebra A where the Gelfand transform induces and injective isometric map of A onto a proper subalgebra of $C(\Delta)$. For A, we want to take the *disk algebra*. There are a couple of ways that the disk algebra arises in the standard texts, but the most convenient for us is to proceed as follows. Let $D = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk. We'll naturally write \overline{D} for its closure $\{z \in \mathbb{C} : |z| \leq 1\}$, and \mathbb{T} for its boundary. Then A will be the subalgebra of $C(\overline{D})$ consisting of functions which are holomorphic on D. Using Morera's Theorem, it is not hard to see that A is closed in $C(\overline{D})$, and therefore a unital commutative Banach algebra.⁵ Notice that for each $z \in \overline{D}$, we obtain $\phi_z \in \Delta$ by $\phi_z(f) := f(z)$. We'll get the example we want by showing that $z \mapsto \phi_z$ is a homeomorphism Ψ of \overline{D} onto Δ . For convenience, let $p_n \in A$ be given by $p_n(z) = z^n$ for $n = 0, 1, 2, \ldots$, and let \mathcal{P} be the subalgebra of polynomials spanned by the p_n .

- (a) First observe that Ψ is injective. (Consider p_1 .)
- (b) If $f \in A$ and 0 < r < 1, then let $f_r(z) := f(rz)$. Show that $f_r \to f$ in A as $r \to 1$.
- (c) Conclude that \mathcal{P} is dense in A. (Hint: show that $f_r \in \overline{\mathcal{P}}$ for all 0 < r < 1.)
- (d) Now show that Ψ is surjective. (Hint: suppose that $h \in \Delta$. Then show that $h = \phi_z$ where $z = h(p_1)$.)
- (e) Show that Ψ is a homeomorphism. (Hint: Ψ is clearly continuous and both \overline{D} and Δ are compact and Hausdorff.)
- (f) Observe that if we use the above to identify Δ and \overline{D} , then the Gelfand transform is the identify on A, and A is a proper subalgebra of $C(\overline{D})$.

⁵The maximum modulus principal implies that the map sending $f \in C(\overline{D})$ to its restriction to \mathbb{T} is an isometric isomorphism of A onto a closed subalgebra A(D) in $C(\mathbb{T})$. Of course, our analysis applies equally well to A(D).