
Math 123 Homework Assignment #1

Due Friday, April 11th

Part I:

1. Let X be a normed vector space and suppose that S and X are bounded linear operators
on X. Show that ‖ST‖ ≤ ‖S‖‖T‖.

2. Let X be a locally compact Hausdorff space. Show that C0(X) is a closed subalgebra of
Cb(X).

3. Let A be a unital Banach algebra. Show that x 7→ x−1 is continuous from G(A) to G(A).
(Use the hint given in lecture.)

Part II:

4. Suppose that X is a compact Hausdorff space. If E is a closed subset of X, define I(E)
to be the ideal in C(X) of functions which vanish on E.

(a) Let J be a closed ideal in C(X) and let E = {x ∈ X : f(x) = 0 for all f ∈ J }. Prove
that if U is an open neighborhood of E in X, then there is a f ∈ J such that f(x) = 1
for all x in the compact set X \ U .

(b) Conclude that J = I(E) in part (a), and hence, conclude that every closed ideal in
C(X) has the form I(E) for some closed subset E of X.

ANS: Fix x0 ∈ X \U . By definition of E, there is a fx0
∈ J with fx0

(x0) 6= 0. Since |f |2 = f̄f ∈ J
if f ∈ J , we may as well assume that fx0

(x) ≥ 0 for all x ∈ X, and since J is a subalgebra, we may
also assume that fx0

(x0) > 1. Since X \ U is compact, there are x1, . . . xn ∈ X so that f =
∑

k
fxk

satisfies f ∈ J and f(x) > 1 for all x ∈ X \ U . Observe that g = min(1, 1/f) is in C(X)1. Since
fg ∈ J , we are done with part (a).

Notice that we have proved a bit more than required in part (a): namely there is a f ∈ J such
that 0 ≤ f(x) ≤ 1 for all x ∈ X and f(x) = 1 for all x ∈ E. Thus if h is any function in I(E) and
ǫ > 0, then U = {x ∈ X : |h(x)| > ǫ } is a neighborhood of E in X. Then we can choose f ∈ J as
above and ‖fh − h‖∞ < ǫ. Thus h ∈ J = J . This suffices as we have J ⊆ I(E) by definition.

1If a, b ∈ C(X), then so are min(a, b) = (a + b)/2− |a− b|/2 and max(a, b) = (a + b)/2 + |a− b|/2. In the
above, we can replace f by max(f, 1/2) without altering g.
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Remark: Notice that we have established a 1-1 correspondence between the closed subsets E of X
and the closed ideals J of C(X): it follows immediately from Urysohn’s Lemma2 that if E is closed
and x /∈ E, then there is a f ∈ I(E) with f(x) 6= 0. Thus I(E) 6= I(F ) if E and F are distinct
closed sets.

5. Suppose that X is a (non-compact) locally compact Hausdorff space. Let X+ be the
one-point compactification of X (also called the Alexandroff compactification: see [Kelly;
Theorem 5.21]). Recall that X+ = X ∪ {∞} with U ⊆ X+ open if and only if either U is
an open subset of X or X+ \ U is a compact subset of X.

(a) Show that f ∈ C(X) belongs to C0(X) if and only if the extension

f̃(x̃) =

{
f(x̃) if x̃ ∈ X, and

0 if x̃ = ∞.

is continuous on X+.

(b) Conclude that C0(X) can be identified with the maximal ideal of C(X+) consisting of
functions which ‘vanish at ∞.’

ANS: Suppose f̃ is continuous at x = ∞, and that ǫ > 0. Then U = { x̃ ∈ X+ : |f̃(x̃)| < ǫ } is an
open neighborhood of ∞ in X+. But then X \ U is compact; but that means {x ∈ X : |f(x)| ≥ ǫ }
is compact. That is, f ∈ C0(X) as required.

For the converse, suppose that f ∈ C0(X), and that V is open in C. If 0 /∈ V , then f̃−1(V ) =
f−1(V ) is open in X, and therefore, open in X+. On the other hand, if 0 ∈ V , then there is a ǫ > 0
so that { z ∈ C : |z| < ǫ } ⊆ V . Thus, X+ \ f̃−1(V ) = {x ∈ X : f(x) /∈ V }

⋂
{x ∈ X : |f(x)| ≥ ǫ }.

Since the first set is closed and the second compact, X+ \ f̃−1(V ) is a compact subset of X, and
f̃−1(V ) is a open neighborhood of ∞ in X+. This proves part (a).

Part (b) is immediate: each f ∈ C0(X) has a (unique) extension to a function in C(X+) and
this identifies C0(X) with the ideal I

(
{∞}

)
in C(X+). In view of question 4 above, I

(
{∞}

)
is

maximal among closed ideals in C(X+), and, as maximal ideals are automatically closed, maximal
among all proper ideals.

6. Use the above to establish the following ideal theorem for C0(X).

Theorem: Suppose that X is a locally compact Hausdorff space. Then every closed ideal
J in C0(X) is of the form

J = { f ∈ C0(X) : f(x) = 0 for all x ∈ E }

2For a reference, see Pedersen’s Analysis Now: Theorems 1.5.6 and 1.6.6 or, more generally, Proposi-
tion 1.7.5.
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for some closed subset E of X.

ANS: Suppose that J is a closed ideal in C0(X). Then J is, in view of question 5(b) above, a
closed subalgebra of C(X+). I claim the result will follow once it is observed that J is actually an
ideal in C(X+). In that case, J = I(E ∪ {∞}), where E ⊆ X is such that E ∪ {∞} is closed in
X+. Thus X+ \ (E ∪ {∞}) = X \ E is open in X, and E is closed in X.

The easy way to verify the claim, is to observe that, in view of the fact that C0(X) is a maximal
ideal in C(X+), C(X+) = { f + λ : f ∈ C0(X) and λ ∈ C }. (Here λ ∈ C is identified with the
constant function on X+.) Then, since J is an algebra, f(g + λ) = fg + λf belongs to J whenever
f does.

Part III:

7. Assume you remember enough measure theory to show that if f, g ∈ L1
(
[0, 1]

)
, then

f ∗ g(t) =

∫
t

0

f(t − s)g(s) ds (1)

exists for almost all t ∈ [0, 1], and defines an element of L1
(
[0, 1]

)
. Let A be the algebra

consisting of the Banach space L1
(
[0, 1]

)
with multiplication defined by (1).

(a) Conclude that A is a commutative Banach algebra: that is, show that f ∗ g = g ∗ f ,
and that ‖f ∗ g‖1 ≤ ‖f‖1 ‖g‖1.

(b) Let f0 be the constant function f0(t) = 1 for all t ∈ [0, 1]. Show that

fn

0 (t) := f0 ∗ · · · ∗ f0(t) = tn−1/(n − 1)!, (2)

and hence,

‖fn

0 ‖1 =
1

n!
. (3)

(c) Show that (2) implies that f0 generates A as a Banach algebra: that is, alg(f) is norm
dense. Conclude from (3) that the spectral radius ρ(f) is zero for all f ∈ A.

(d) Conclude that A has no nonzero complex homomorphisms.
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ANS: First compute that3

‖f ∗ g‖1 =

∫ 1

0

|f ∗ g(t)| dt

≤

∫ 1

0

∫
t

0

|f(t − s)g(s)| ds dt

which, using Tonelli’s Theorem, is

=

∫ 1

0

|g(s)|
(∫ 1

s

|f(t − s)| dt
)

ds

=

∫ 1

0

|g(s)|
(∫ 1−s

0

|f(u)| du
)

ds

≤ ‖f‖1‖g‖1.

To show that f ∗ g = g ∗ f it suffices, in view of the above, to consider continuous functions.
Thus, the usual calculus techniques apply. In particular,

f ∗ g(t) =

∫
t

0

f(t − s)g(s) ds

= −

∫ 0

t

f(u)g(t − u) du = g ∗ f(t).

This proves (a). However, (b) is a simple induction argument.
Now for (c): the calculation (2) shows that alg(f0) contains all polynomials. Since the polyno-

mials are uniformly dense in C[0, 1], and the later is dense in L1, we can conclude that alg(f0) is
norm dense.

Next, observe that (3) not only implies that ρ(f0) = 0, but that ρ(fk
0 ) = 0 as well for any positive

integer k. However, it is not immediately clear that every element of alg(f0) has spectral radius zero.

However, there is an easy way to see this. Let Ã be the unitalization of A (i.e., Ã := A ⊕ C), and
recall that a ∈ A has spectral radius zero (a is called quasi-nilpotent) if and only if h̃(a) = 0 for all

h̃ ∈ ∆̃ = ∆(Ã). Since each h̃ is a continuous algebra homomorphism, ker(h̃) is a closed ideal in Ã,
and it follows that the collection of quasi-nilpotent elements is actually a closed ideal of A given by4

rad(A) =
⋂

h̃∈e∆
ker(h̃).

3For a reference for Tonelli’s Theorem (the ‘uselful’ version of Fubini’s Theorem), see [Analysis Now,
Corollary 6.6.8], or much better, see Royden’s Real Analysis. On the other hand, if you are worried about
the calculus style manipulation of limits, consider the integrand

F (s, t) =

{
|f(t − s)g(s)| if 0 ≤ s ≤ t ≤ 1, and

0 otherwise.

4This result is of interest in its own right. Note that A is always a maximal ideal in Ã, and so rad(A) is
always contained in A itself.
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Since each fk
0 is in rad(A), so is the closed algebra (in fact, the closed ideal) generated by f0. Thus,

rad(A) = A in this case, which is what was to be shown.
Of course, (d) is an immediate consequence of (c): if ρ ∈ ∆(A), then by defintion there is a

f ∈ A such that ρ(f) 6= 0. But then ρ(f) ≥ |h(f)| > 0, which contradicts the fact that rad(A) = A.

8. Here we want to give an example of a unital commutative Banach algebra A where the
Gelfand transform induces and injective isometric map of A onto a proper subalgebra of
C(∆). For A, we want to take the disk algebra. There are a couple of ways that the disk
algebra arises in the standard texts, but the most convenient for us is to proceed as follows.
Let D = { z ∈ C : |z| < 1 } be the open unit disk. We’ll naturally write D for its closure
{ z ∈ C : |z| ≤ 1 }, and T for its boundary. Then A will be the subalgebra of C(D) consisting
of functions which are holomorphic on D. Using Morera’s Theorem, it is not hard to see
that A is closed in C(D), and therefore a unital commutative Banach algebra.5 Notice that
for each z ∈ D, we obtain φz ∈ ∆ by φz(f) := f(z). We’ll get the example we want by
showing that z 7→ φz is a homeomorphism Ψ of D onto ∆. For convenience, let pn ∈ A be
given by pn(z) = zn for n = 0, 1, 2, . . . , and let P be the subalgebra of polynomials spanned
by the pn.

(a) First observe that Ψ is injective. (Consider p1.)

(b) If f ∈ A and 0 < r < 1, then let fr(z) := f(rz). Show that fr → f in A as r → 1.

(c) Conclude that P is dense in A. (Hint: show that fr ∈ P for all 0 < r < 1.)

(d) Now show that Ψ is surjective. (Hint: suppose that h ∈ ∆. Then show that h = φz

where z = h(p1).)

(e) Show that Ψ is a homeomorphism. (Hint: Ψ is clearly continuous and both D and ∆
are compact and Hausdorff.)

(f) Observe that if we use the above to identify ∆ and D, then the Gelfand transform is
the identify on A, and A is a proper subalgebra of C(D).

5The maximum modulus principal implies that the map sending f ∈ C(D) to its restriction to T is an
isometric isomorphism of A onto a closed subalgebra A(D) in C(T). Of course, our analysis applies equally
well to A(D).
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