Math 123 OPTIONAL Homework Assignment on Nets Not not turn in.

1. Suppose that X is a first countable space. Show that each $x \in X$ has a neighborhood basis of open sets $\{U_n\}_{n=1}^{\infty}$ such that $U_{n+1} \subseteq U_n$.

- 2. Let X and Y be 1^{st} countable spaces.
- (a) Show that $\mathcal{O} \subseteq X$ is open in X if and only if every sequence converging to some $x \in \mathcal{O}$ is eventually in \mathcal{O} .
- (b) Show that $F \subseteq X$ is closed if and only if every convergent sequence in F converges to a point in F.
- (c) Show that $f: X \to Y$ is continuous if and only if whenever $\{x_n\}_{n=1}^{\infty}$ coverges to $x \in X$ then $\{f(x_n)\}_{n=1}^{\infty}$ converges to $f(x) \in Y$.
- (d)* Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in X. Show that if $\{x_n\}_{n=1}^{\infty}$ has a convergent *subnet*, then $\{x_n\}_{n=1}^{\infty}$ has a convergent *subsequence*. (Hint: if $\{x_n\}_{n=1}^{\infty}$ has an accumulation point, then it must have a convergent subsequence.)
- (e)* Show that 1st countability is required in part (d). (Hint: let ℓ^{∞} denote the set of bounded sequences. If $\alpha = \{\alpha_n\}_{n=1}^{\infty} \in \ell^{\infty}$, let I_{α} be any closed bounded interval in **R** such that $\alpha_n \in I_{\alpha}$ for all n. Set

$$Z = \prod_{\alpha \in \ell^{\infty}} I_{\alpha}.$$

Consider the sequence $\{x_n\}_{n=1}^{\infty}$ in the compact space Z defined by $x_n(\alpha) = \alpha_n$.)

3. Let \mathcal{H} be a separable infinite dimensional (complex) Hilbert space with orthonormal basis $\{e_n\}_{n=1}^{\infty}$. Let $S = \{\sqrt{n}e_n\}_{n=1}^{\infty}$, and let W be the weak closure of S in \mathcal{H} .

- (a) Show that $0 \in W$.
- (b) Observe that no sequence in S converges weakly to 0.

(Hints: A basic weak neighborhood of 0 is of the form

$$U = \{ h \in \mathcal{H} : |(h \mid k_j)| < \epsilon \text{ for } j = 1, \dots, n \}.$$

If $\sqrt{n}e_n \notin U$, then

$$\sum_{j=1}^{n} |(e_n \mid k_j)|^2 \ge \frac{\epsilon^2}{n}.$$

Observe that this can't happen for all n.

For the second part, observe that the principal of uniform boundedness implies that any weakly convergent *sequence* is bounded. Of course, no bounded sequence from S can converge weakly to 0.)