Math 123 OPTIONAL Homework Assignment on Nets Not not turn in.

1. Suppose that X is a first countable space. Show that each $x \in X$ has a neighborhood basis of open sets $\{U_n\}_{n=1}^{\infty}$ such that $U_{n+1} \subseteq U_n$.

- 2. Let X and Y be 1^{st} countable spaces.
- (a) Show that $\mathcal{O} \subseteq X$ is open in X if and only if every sequence converging to some $x \in \mathcal{O}$ is eventually in \mathcal{O} .
- (b) Show that $F \subseteq X$ is closed if and only if every convergent sequence in F converges to a point in F.
- (c) Show that $f: X \to Y$ is continuous if and only if whenever $\{x_n\}_{n=1}^{\infty}$ coverges to $x \in X$ then $\{f(x_n)\}_{n=1}^{\infty}$ converges to $f(x) \in Y$.
- (d)* Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in X. Show that if $\{x_n\}_{n=1}^{\infty}$ has a convergent *subnet*, then $\{x_n\}_{n=1}^{\infty}$ has a convergent *subsequence*. (Hint: if $\{x_n\}_{n=1}^{\infty}$ has an accumulation point, then it must have a convergent subsequence.)
- (e)* Show that 1st countability is required in part (d). (Hint: let ℓ^{∞} denote the set of bounded sequences. If $\alpha = \{\alpha_n\}_{n=1}^{\infty} \in \ell^{\infty}$, let I_{α} be any closed bounded interval in **R** such that $\alpha_n \in I_{\alpha}$ for all n. Set

$$Z = \prod_{\alpha \in \ell^{\infty}} I_{\alpha}.$$

Consider the sequence $\{x_n\}_{n=1}^{\infty}$ in the compact space Z defined by $x_n(\alpha) = \alpha_n$.) ANS: (a) (\Leftarrow) This is easy.

 (\Longrightarrow) Just as in lecture, if \mathcal{O} fails to be open, then there is a $x \in \mathcal{O}$ such that every neighborhood of x intersects \mathcal{O}^c . Choose a neighborhood basis at x of the form $\{U_n\}_{n=1}^{\infty}$ with $U_{n+1} \subseteq U_n$. Now choose $x_n \in U_n \cap \mathcal{O}^c$. We have $x_n \to x$ while $\{x_n\}_{n=1}^{\infty} \subseteq \mathcal{O}^c$, a contradiction.

(d) Let $\{x_{n_{\beta}}\}_{\beta \in B}$ be a subnet converging to $x \in X$. Let $\{U_n\}$ be a neighborhood basis at x as above.

We will define a subsequence inductively. Since $\{x_{n_{\beta}}\}$ is eventually in U_1 , there is a n_1 so that $x_{n_1} \in U_1$. Now suppose we have choosen $n_1 < n_2 < \cdots < n_k$ with $x_{n_j} \in U_j$ for $j = 1, 2, \ldots, k$. Using the definition of a subnet, there is a $\beta_0 \in B$ so that $\beta \geq \beta_0$ implies that $n_{\beta} \geq n_k$. On the other hand, since our subnet converges to x, there is a β'_0 such that $\beta \geq \beta'_0$ implies that $x_{n_{\beta}} \in U_{k+1}$. Thus if $\beta \geq \beta_0$ and $\beta \geq \beta'_0$, then we may take $n_{k+1} = n_{\beta}$. This suffices. (e) Since Z is compact, $\{x_n\}_{n=1}^{\infty}$ must have a convergent subnet. Suppose that $\{x_n\}_{n=1}^{\infty}$ had a convergent subsequence: say $\{x_{n_k}\}_{k=1}^{\infty}$ converges to $x \in Z$. Now let $\alpha \in \ell^{\infty}$ be defined as follows:

$$\alpha_n = \begin{cases} (-1)^k & \text{if } n = n_k \text{ for some } k \ge 1, \text{ and,} \\ 0 & \text{otherwise.} \end{cases}$$

In other words, $x_{n_k}(\alpha) = (-1)^k$. But we must have $x_{n_k}(\alpha)$ converging to the number $x(\alpha)$. This is a contradiction.

3. Let \mathcal{H} be a separable infinite dimensional (complex) Hilbert space with orthonormal basis $\{e_n\}_{n=1}^{\infty}$. Let $S = \{\sqrt{n}e_n\}_{n=1}^{\infty}$, and let W be the weak closure of S in \mathcal{H} .

- (a) Show that $0 \in W$.
- (b) Observe that no sequence in S converges weakly to 0.

(Hints: A basic weak neighborhood of 0 is of the form

$$U = \{ h \in \mathcal{H} : |(h \mid k_j)| < \epsilon \text{ for } j = 1, \dots, n \}$$

If $\sqrt{n}e_n \notin U$, then

$$\sum_{j=1}^n |(e_n \mid k_j)|^2 \ge \frac{\epsilon^2}{n}$$

Observe that this can't happen for all n.

For the second part, observe that the principal of uniform boundedness implies that any weakly convergent *sequence* is bounded. Of course, no bounded sequence from S can converge weakly to 0.)

ANS: As in the hint, if $\sqrt{n}e_n \notin U$, then

$$\sum_{j=1}^{n} |(h \mid k_j)|^2 \ge \frac{\epsilon}{n}.$$
(1)

On the other hand,

$$\sum_{j=1}^{n} \|k_j\|^2 = \sum_{j=1}^{n} \sum_{n=1}^{\infty} |(e_n|k_j)|^2 = \sum_{n=1}^{\infty} \sum_{j=1}^{n} |(e_n|k_j)|^2 < \infty.$$

Clearly, the above can't hold if (1) holds for all n. Hence $S \cap U \neq \emptyset$. Since U is arbitrary, we have shown that $0 \in W$.

For the second part, suppose that $h_n \to h$ weakly. Let ϕ_{h_n} be the linear functional $\phi_{h_n}(k) := (k \mid |h_n)$. Then $\|\phi_{h_n}\| = \|h_n\|$. Clearly, $\{\phi_{h_n}(k) : n \in \mathbf{N}\}$ is bounded for each k. Then the principal of uniform boundedness implies that $\{\|h_n\| : n \in \mathbf{N}\}$ is bounded. It then follows that if $\{h_n\}$ is a sequence in S converging to 0 weakly, then there is a M such that $\|h_n\| \leq M$ for all n. This is clearly nonsense. So no sequence from S can converge weakly to 0.