
Mathematics 11
Practice Problems on New Material for the Final:

Sample Solutions

The final exam is cumulative, but will concentrate on new material not covered on the
two midterm exams. These problems are only on the new material.

1. Consider the paraboloid with equation

z = x2 + y2.

(a) Rewrite this equation in cylindrical coordinates and in spherical coordinates.

Solution:
z = r2

ρ cosϕ = ρ2 sin2 ϕ ρ =
cosϕ

sin2 ϕ
= cotϕ cscϕ

(b) Let S be the portion of this paraboloid for which z ≤ 1, oriented with the unit
normal vector pointing away from the z-axis. Use the three equations for the
paraboloid from part (a) to find three different parametrizations of the surface S
as

(x, y, z) = ~r(u, v).

In each case, identify (using one or more inequalities) the region D in the uv-plane
that is mapped onto S by ~r, and verify that your parametrization has the correct
orientation.

Solution:

Using rectangular coordinates, we try

(x, y, z) = (u, v, u2 + v2) u2 + v2 ≤ 1.

Computing
~ru × ~rv = 〈−2u, −2v, 1〉

we see we have the wrong orientation. (Here the z-component of the normal
vector is positive, but if the normal vector to this paraboloid points away from
the z-axis, it should point downward.) Therefore we try again, switching u and
v:

(x, y, z) = (v, u, v2 + u2) v2 + u2 ≤ 1.

Computing
~ru × ~rv = 〈2v, 2u, −1〉

we see the orientation is correct.
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Using cylindrical coordinates, we try u = θ, v = r, to get

(x, y, z) = (v cosu, v sinu, v2) 0 ≤ u ≤ 2π 0 ≤ v ≤ 1;

~ru × ~rv =
〈
2v2 cosu, 2v2 sinu, −v

〉
,

which gives the correct orientation.

Using spherical coordinates, we try u = θ, v = ϕ, to get

(x, y, z) = (cot v cosu, cot v sinu, cot2 v, ) 0 ≤ u ≤ 2π
π

4
≤ v ≤ π

2
;

~ru × ~rv = (cot v csc2 v) 〈2 cosu cot v, 2 sinu cot v, −1〉 ,
which gives the correct orientation.

(c) Use each of the three parametrizations from part (b) to express the surface area
of S as an integral.

Solution:

∫ 1

−1

∫ √1−v2

−
√

1−v2

√
4u2 + 4v2 + 1 du dv∫ 1

0

∫ 2π

0

v
√

4v2 + 1 du dv∫ π
2

π
4

∫ 2π

0

cot v csc2 v
√

4 cot2 v + 1 du dv

2. Suppose ~F is a vector field on R3 all of whose components have continuous first and
second partial derivatives, and S is a sphere, oriented so the unit normal vector points
outwards. Show that ∫∫

S

curl(~F ) · d~S = 0

in two different ways:

(a) By using Stokes’ Theorem.

Solution: Use a horizontal plane through the center of the sphere to divide S into
two hemispheres, meeting at a circle C. Let γ denote C oriented counterclockwise
as seen from above, and −γ denote C with the opposite orientation.

Since the top hemisphere S1 is oriented with unit normal vector pointing upward,
its boundary is γ; since the bottom hemisphere S2 is oriented with unit normal
vector pointing downward, its boundary is −γ. By Stokes’ Theorem,∫∫

S

curl(~F ) · d~S =

∫∫
S1

curl(~F ) · d~S +

∫∫
S2

curl(~F ) · d~S =

∫
γ

~F · d~r+

∫
−γ

~F · d~r.
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Since −γ is γ with the opposite orienation, we have∫
−γ

~F · d~r = −
∫
γ

~F · d~r,

and so∫∫
S

curl(~F ) · d~S =

∫
γ

~F · d~r +

∫
−γ

~F · d~r =

∫
γ

~F · d~r +

(
−
∫
γ

~F · d~r
)

= 0.

(b) By using the Divergence Theorem.

Solution: We know (from Clairaut’s Theorem) that div(curl(~F )) = 0. By the
Divergence Theorem, letting E denote the solid ball with boundary S, we have∫∫

S

curl(~F ) · d~S =

∫∫∫
E

(div(curl(~F )) dV =

∫∫∫
E

0 dV = 0

3. Use Green’s Theorem to compute the area of the portion of the disc x2 + y2 ≤ 4 to the
right of the line x = −1. Verify your answer using basic geometry. (Hint: This region
can be broken up into two pieces; one is the disc minus a wedge, whose area can be
easily computed as a fraction of the area of the disc, and the other is a triangle.)

Solution:

Let D denote the region in question, bounded by a portion of the circle of radius 2
around the origin and a portion of the line x = −1. The circle and the line intersect
at the points (−1,−

√
3) (θ = −2π

3
) and (−1,

√
3) (θ = 2π

3
). Let C denote the portion

of the circle that is part of the boundary of D, and L the portion of the line that is
the boundary of D. By Green’s Theorem, we have

area(D) =

∫∫
D

1 dA =

∫∫
∂

∂x

(x
2

)
− ∂

∂y

(
−y
2

)
dA =

∫
∂D

−y
2
dx+

x

2
dy =

∫
C

−y
2
dx+

x

2
dy +

∫
L

−y
2
dx+

x

2
dy.

To have the positive orientation, C must be oriented counterclockwise, and L from top

to bottom. We can parametrize C by 〈x, y〉 = 〈2 cos t, 2 sin t〉, −2π

3
≤ t ≤ 2π

3
, and get

∫
C

−y
2
dx+

x

2
dy =

∫ 2π
3

− 2π
3

〈− sin t, cos t〉 · 〈−2 sin t, 2 cos t〉 dt =
8π

3
.
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On L, x = −1 and −
√

3 ≤ y ≤
√

3, but the orientation is from y =
√

3 to y = −
√

3,
so ∫

L

−y
2
dx+

x

2
dy =

∫ −√3

√
3

−1

2
dy =

√
3.

Thus the area of D is∫
C

−y
2
dx+

x

2
dy +

∫
L

−y
2
dx+

x

2
dy =

8π

3
+
√

3.

To check this using basic geometry: The entire disc of radius 2 has area 4π, and the

disc minus the wedge (that is, the portion of the disc given by −2π

3
≤ θ ≤ 2π

3
) is

two-thirds of the entire disc, so its area is
8π

3
. To this we must add the area of the

triangle with corners, (0, 0), (−1,
√

3), and (−1,−
√

3), which is
√

3. Hence the area of

D is
8π

3
+
√

3.

4. Find the flux of the vector field

~F (x, y, z) =
〈
z, z,

√
x2 + y2

〉
over the portion of the hyperboloid x2 + y2 = z2 + 1 between the planes z = 0 and

z =

√
3

3
, oriented so the unit normal vector points away from the z-axis.

Do this directly, without using Stokes’ Theorem or the Divergence Theorem.

Solution: The equation of the hyperboloid can be expressed in cylindrical coordinates

as r2 = 1 + z2, or z =
√
r2 − 1; we have the portion 0 ≤ z ≤

√
3

3
, or 1 ≤ r ≤ 2

√
3

3
.

Parametrizing the surface using u = r and v = θ we get

〈x, y, z〉 = ~r =
〈
u cos v, u sin v,

√
u2 − 1

〉
1 ≤ u ≤ 2

√
3

3
0 ≤ v ≤ 2π

~ru × ~rv =

〈
− u2 cos v√

u2 − 1
, − u2 sin v√

u2 − 1
, u

〉
.

This has the wrong orientation, so we put a minus sign in front of the integral to
account for that:∫∫

S

~F ·d~S = −
∫ 2π

0

∫ 2
√

3
3

1

〈√
u2 − 1,

√
u2 − 1, u

〉
·
〈
− u2 cos v√

u2 − 1
, − u2 sin v√

u2 − 1
, u

〉
du dv =
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−
∫ 2π

0

∫ 2
√

3
3

1

u2(cos v + sin v + 1) du dv = −2π(8
√

3− 9)

27
.

Note: This can also be done using the Divergence Theorem, as in the solution to the
next problem: by adding two discs to S we can form a closed surface.

5. Find the flux of the vector field

~F (x, y, z) = 〈ey + x, 3 cos(xz)− y, z〉

through the surface S, where S is given by

z2 = 4x2 + 4y2 0 ≤ z ≤ 4,

oriented so the unit normal vector points downward.

Solution: We could do this directly, but we can also use the Divergence Theorem. S
is the portion of the cone z2 = 4(x2 + y2) with 0 ≤ z ≤ 4, oriented with ~N pointing

outward; if we let D be the disc x2 + y2 ≤ 4, z = 4, oriented with ~N pointing upward,
then S ∪D is the boundary of the solid region E given by 2

√
x2 + y2 ≤ z ≤ 4, a right

circular cone of height 4 and base radius 2.

The divergence of the vector field ~F is 1, so applying the Divergence Theorem, we get∫∫
S

~F · d~S +

∫∫
D

~F · d~S =

∫∫∫
E

div(~F ) dV =

∫∫∫
E

1 dV = volume(E) =
16π

3
.

On D, we have z = 4 and ~N = 〈0, 0, 1〉, so∫∫
D

~F · d~S =

∫∫
D

~F · ~N dS =

∫∫
D

z dS =

∫∫
D

4 dS = 4(area(D)) = 16π.

Solving, ∫∫
S

~F · d~S = −32π

3
.

6. Find the average distance from the z-axis of a point on the sphere with radius 1 and
center (0, 0, 0).

(The average value of f over the surface S is defined to be the integral of f over S,
divided by the surface area of S.)

Solution: The distance from the z-axis of the point (x, y, z) is
√
x2 + y2, so we need

to compute
∫∫

S

√
x2 + y2 dS, and divide by the surface area of S.

The sphere S can be parametrized using spherical coordinates, setting u = ϕ and
v = θ, by

〈x, y, z〉 = ~r = 〈sinu cos v, sinu sin v, cosu〉
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0 ≤ u ≤ π 0 ≤ v ≤ 2π

dS = |~ru × ~rv| du dv =
∣∣〈sin2 u cos v, sin2 u sin v, sinu cosu

〉∣∣ du dv = sinu du dv.

area(S) =

∫∫
S

dS =

∫ 2π

0

∫ π

0

sinu du dv = 4π∫∫
S

√
x2 + y2 dS =

∫ 2π

0

∫ π

0

(sinu) sinu du dv = π2

Hence the average distance from the z axis of a point on the sphere is

π2

4π
=
π

4
.

7. Let P be the parallelogram with vertices at (0, 0), (1, 4), (3, 2), and (4, 6). Evaluate∫∫
P

xy dA.

Solution: P is the image of the square S in the uv-plane with corners (0, 0), (0, 1),
(1, 0), and (1, 1) under the linear transformation

(x, y) = T (u, v) = 〈3u+ v, 2u+ 4v〉 ∂(x, y)

∂(u, v)
=

∣∣∣∣det

(
3 1
2 4

)∣∣∣∣ = 10.

Using this change of variables,∫∫
P

xy dx dy =

∫∫
S

(3u+v)(2u+4v)10 du dv =

∫ 1

0

∫ 1

0

60u2+140uv+40v2 du dv =
205

3
.

8. Evaluate ∫
C

xy dx− x2 dy

where C is the circle of radius 3 centered at (1, 0).

Solution: We can do this directly, or by using Green’s Theorem. Since C is a closed
curve, we can assume it has the positive (counterclockwise) orientation.

To compute the integral directly, parametrize C by 〈x, y〉 = 〈cos t, sin t〉, 0 ≤ t ≤ 2π,
so dx = − sin t dt and dy = cos t dt. Then∫
C

xy dx− x2 dy =

∫ 2π

0

(cos t sin t)(− sin t) + (− cos2 t)(cos t) dt =

∫ 2π

0

− cos t dt = 0.
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To use Green’s Theorem, let D be the unit disc, so ∂D = C. By Green’s Theorem∫
C

xy dx− x2 dy =

∫∫
D

∂

∂x
(−x2)− ∂

∂y
(xy) dA =

∫∫
D

−3x dA = 0.

(This last integral can be seen to be zero by symmetry: −3x is an odd function of x,
and D is symmetric about x = 0.)

9. Compute ∫∫
S

~F · d~S

where
~F (x, y, z) = x~i+ y~j + 2z ~k

and S is the part of the sphere x2 + y2 + z2 = 2 with 0 ≤ z ≤ 1.

Solution: We aren’t given an orientation for S, but since S is part of a sphere it
makes sense to take ~N pointing outwards, or (since we’re on the top half of the sphere)
upwards.

Parametrize S using spherical coordinates, with ρ =
√

2, u = ϕ, v = θ:

~r = 〈x, y, z〉 =
〈√

2 sinu cos v,
√

2 sinu sin v,
√

2 cosu
〉

π

4
≤ u ≤ π

2
0 ≤ v ≤ 2π

~ru × ~rv =
〈
2 sin2 u cos v, 2 sin2 u sin v, 2 sinu cosu

〉
,

which has the correct orientation (as the z-component is a positive multiple of z).∫∫
S

~F · d~S =

∫∫
S

〈x, y, 2z〉 · d~S =∫ 2π

0

∫ π
2

π
4

〈√
2 sinu cos v,

√
2 sinu sin v, 2

√
2 cosu

〉
·〈

2 sin2 u cos v, 2 sin2 u sin v, 2 sinu cosu
〉
du dv =∫ 2π

0

∫ π
2

π
4

2
√

2(sinu+ sinu cos2 u) du dv =
14π

3
.

10. Find the surface area of the torus obtained by rotating the circle

(x− 5)2 + y2 = 9

around the y axis.
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Solution: We need to parametrize the torus. First, we can parametrize the circle as

x− 5 = 3 cos t y = 3 sin t

x = 3 cos t+ 5 y = 3 sin t 0 ≤ t ≤ 2π

Now if we rotate a point (x, y) = (a, b) = (3 cos t + 5, 3 sin t) on this circle about the
y-axis through an angle θ, the y-coordinate remains b, and the distance from the y-axis
remains a, but (thinking polar coordinates in the xz-plane), instead of (x, z) = (a, 0),
we have (x, z) = (a cos θ, a sin θ). That is, the coordinates of the rotated point are

(x, y, z) = (a cos θ, b, a sin θ) = ((3 cos t+ 5) cos θ, 3 sin t, (3 cos t+ 5) sin θ).

We use u = t and v = θ to parametrize S:

~r = 〈x, y, z〉 = 〈(3 cosu+ 5) cos v, 3 sinu, (3 cosu+ 5) sin v〉

0 ≤ u ≤ 2π 0 ≤ v ≤ 2π

~ru × ~rv = 〈3 cos v cosu(3 cosu+ 5), 3 sinu(3 cosu+ 5), 3 sin v cosu(3 cosu+ 5)〉 .

area(S) =

∫∫
S

dS =

∫ 2π

0

∫ 2π

0

|~ru × ~rv| du dv =

∫ 2π

0

∫ 2π

0

9 cosu+ 15 du dv = 60π2.

11. Consider the vector field

~F (x, y, z) = (3x2yz)~i+ (x3z − 3x)~j + (x23y + 2z)~k.

(a) Show that ~F is conservative.

Solution: Check that the curl of ~F equals ~0 everywhere.

Actually, it doesn’t, because there was a typo in this problem. The field should
have been

~F (x, y, z) = (3x2yz)~i+ (x3z − 3y)~j + (x3y + 2z)~k.

(b) Compute the line integral of ~F along the curve C parametrized by

~r(t) = cos t~i+ sin t~j + t~k 0 ≤ t ≤ 4π.

Solution: If we have the correct field, which is actually conservative, there are
three ways to do the problem:

(1.) Directly: Use the parametrization of the curve to compute the line integral.
This is the hard way.
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(2.) Using path independence to convert the integral into an integral along an
easier path with the same endpoints, say the line segment x = 1, y = 0, 0 ≤ z ≤
4π. This gives us∫

C

3x2yz dx+ (x2z − 3y) dy + (x3y + 2z) dz =

∫ 4π

0

2z dz = 16π2.

(3.) Finding a potential function for ~F (it’s f(x, y, z) = x2yz − 3y2

2
+ 2z) and

evaluating it at the endpoints:∫
C

~F d~r = f(1, 0, 4π)− f(1, 0, 0) = 16π2 − 0 = 16π2.

12. Evaluate ∫
C

〈
ex, e−x, ez

〉
· d~r

where C is the boundary of the portion of the plane

x+ y + z = 1

in the first octant, oriented counter-clockwise as viewed from above.

Solution: The easy way to do this is by using Stokes’ Theorem. Let S denote the
surface of which C is the boundary, and vecF = 〈ex, e−x, ez〉. Then∫

C

~F · d~r =

∫∫
S

(curl ~F ) · d~S =

∫∫
S

〈
0, 0,−e−x

〉
· d~S.

If we parametrize S by setting x = u and y = v, we have

~r = 〈x, y, z〉 = 〈u, v, 1− u− v〉

0 ≤ u ≤ 1 0 ≤ v ≤ 1− u
~ru × ~rv = 〈1, 1, 1〉 .

We can see this has the correct orientation.∫∫
S

〈
0, 0,−e−x

〉
· d~S =

∫ 1

0

∫ 1−u

0

−e−u dv du =

∫ 1

0

ue−u − e−u du.

This integral is not intractable (use integration by parts), but it becomes even easier
if we reverse the order of integration:∫ 1

0

∫ 1−v

0

−e−u du dv =

∫ 1

0

ev−1 − 1 dv = (ev−1 − v)
∣∣∣v=1

v=0
= −e−1.
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13. Identify each of the following as:

(i) undefined.

(ii) a scalar function.

(iii) a scalar function, always 0.

(iv) a vector function.

(v) a vector function, always ~0.

given that f : R3 → R and ~F : R3 → R3.

(a) div(grad(f))

Solution: scalar (not 0, e.g. if f = y2).

(b) div(div(f))

Solution: undefined.

(c) div(curl(f))

Solution: undefined.

(d) grad(grad(f))

Solution: undefined.

(e) grad(div(f))

Solution: undefined.

(f) grad(curl(f))

Solution: undefined.

(g) curl(grad(f))

Solution: vector, ~0.

(h) curl(div(f))

Solution: undefined.

(i) curl(curl(f))

Solution: undefined.

(j) div(grad(~F ))

Solution: undefined.

(k) div(div(~F ))

Solution: undefined.

(l) div(curl(~F ))

Solution: vector, ~0.

(m) grad(grad(~F ))

Solution: undefined.
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(n) grad(div(~F ))

Solution: vector (not ~0, e.g. if ~F = 〈y2, y2, 0〉).

(o) grad(curl(~F ))

Solution: undefined.

(p) curl(grad(~F ))

Solution: undefined.

(q) curl(div(~F ))

Solution: undefined.

(r) curl(curl(~F ))

Solution: vector (not ~0, e.g. if ~F = 〈y2, y2, 0〉).
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