Mathematics 11
Practice Exam 2

1. Consider the function

$$
f(x, y)=2 x y+x^{2}
$$

(a) Find all critical points of f.
(b) For each critical point, determine whether it is a local maximum, local minimum, or saddle point.
(c) Consider the rectangular region

$$
D=\{(x, y) \mid-1 \leq x \leq 1,-1 \leq y \leq 1\}
$$

Determine the absolute maximum value of f on D, and state the point(s) where f attains this value.
2. Let

$$
F(x, y)=\left\langle y e^{x y} \sin y+\cos y, x e^{x y} \sin y+e^{x y} \cos y\right\rangle
$$

Is F conservative?
If so, find a potential function for F.
If not, find a closed curve (a loop) C for which $\int_{C} F \cdot d \vec{r} \neq 0$, and determine the value of $\int_{C} F \cdot d \vec{r}$.
3. Let R be the rectangle with vertices at $(1,2),(6,2),(6,5),(1,5)$, and let C be the curve that traverses the sides of R counterclockwise.

Suppose $f(x, y)$ is a function on \mathbb{R}^{2} satisfying $3 \leq f(x, y) \leq 7$ for all x, y. What is the maximum possible value of

$$
\int_{C} f(x, y) d x+f(x, y) d y ?
$$

4. Find

$$
\iiint_{E} x d V
$$

where E is the region in \mathbb{R}^{3} above the $x y$-plane, below the surface $z=1-x^{2}$, and between the planes $y=0$ and $y=4$.
5. Do NOT evaluate the following integrals.

Figure 1: The lemniscate of Bernoulli (problem 6).
(a) Rewrite

$$
\int_{0}^{\pi} \int_{0}^{4} \int_{-r^{2}}^{0} z r^{4} \cos \theta d z d r d \theta
$$

as an integral or sum of integrals in rectangular coordinates.
(b) Rewrite

$$
\int_{0}^{1} \int_{1-y}^{1} x^{2}+y^{2} d x d y
$$

as an integral or sum of integrals in polar coordinates.
6. The lemniscate of Bernoulli is a curve in the plane defined by the equation

$$
\left(x^{2}+y^{2}\right)^{2}=x^{2}-y^{2}
$$

(see the picture). Let R be the portion of the right petal of the lemniscate above the x-axis. Evaluate $\iint_{R} x y d A$.

