
Math 11 Section 1
September 26, 2012
Sample Solutions

(1.) Last time we saw that
∂f

∂x
(x0, y0) is the vertical slope of the intersection of the graph

of f with the plane y = y0, so that

〈
1, 0,

∂f

∂x
(x0, y0)

〉
is a vector tangent to the graph of

f at the point (x0, y0, f(x0, y0)). Similarly the vector

〈
0, 1,

∂f

∂y
(x0, y0)

〉
is tangent to the

graph of f at the point (x0, y0, f(x0, y0)).

Use this to find two vectors tangent to the graph of the function f(x, y) = x2 − xy + y2

at the point (1, −1, 3).〈
1, 0,

∂f

∂x

〉
= 〈1, 0, 2x− y〉 = 〈1, 0, 3〉〈

0, 1,
∂f

∂y

〉
= 〈0, 1,−x+ 2y〉 = 〈0, 1,−3〉

Find a vector normal to the graph of the function f(x, y) = x2 − xy + y2 at the point
(1, −1, 3).

〈1, 0, 3〉 × 〈0, 1,−3〉 = 〈−3, 3, 1〉

Find an equation for the plane tangent to the graph of the function f(x, y) = x2−xy+y2

at the point (1, −1, 3).

This is the plane containing the point (1, −1, 3) with normal vector 〈−3, 3, 1〉. Its equa-
tion is 〈−3, 3, 1〉 · 〈x− 1, y − (−1), z − 3〉 = 0, or −3x+ 3y + z = −3 .

(2.) Applying this same reasoning to any function f gives us the fact that if f has a tangent
plane at (x0, y0, f(x0, y0)), then that tangent plane is given by

z = f(x0, y0) +
∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0).

We can use this to get a linear tangent approximation to f(x, y): If (x, y) is near (x0, y0),
then

f(x, y) ≈ L(x, y) = f(x0, y0) +
∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0).

(This should look a lot like the tangent line approximation to a function f(x).)
Use this method, applied to the function f(x, y) = xey near the point (2, 0), to approxi-

mate (2.005)e−.01.

1



First we compute

∂f

∂x
(x, y) = ey ∂f

∂y
(x, y) = xey.

Using (x0, y0) = (2, 0), we get that if (x, y) is near (2, 0), then

f(x, y) ≈ L(x, y) = f(x0, y0) + ∂f
∂x

(x0, y0)(x− x0) + ∂f
∂y

(x0, y0)(y − y0) =

2e0 + (e0)(x− 2) + (2e0)(y − 2) = 2 + 1(x− 2) + 2(y − 0).

(2.005)e−.01 = f(2.005,−.01) ≈ 2 + 1(2.005− 2) + 2(−.01− 0) = 2 + .005− .02 = 1.985 .

(3.) A theorem from the text tells us that the graph of f(x, y) does have a tangent plane
at (x0, y0, f(x0, y0)) if the partial derivatives of f are continuous on some disc containing
(x0, y0).

(The graph does not have a tangent plane if the partial derivatives of f are undefined at
(x0, y0). If the partial derivatives of f are defined at the point but not continuous on any
disc containing the point, the graph may or may not have a tangent plane.)

Consider the function

f(x, y) =

{
xy√
x2+y2

if (x, y) 6= (0, 0);

0 if (x, y) = (0, 0).

Show that f is continuous at (x, y) = (0, 0).

We must show that lim
(x,y)→(0,0)

f(x, y) = f(0, 0) = 0. From the definition of f ,

lim
(x,y)→(0,0)

f(x, y) = lim
(x,y)→(0,0)

xy√
x2 + y2

.

We can analyze this limit in different ways; perhaps the easiest is to use polar coordinates:

lim
(x,y)→(0,0)

xy√
x2 + y2

= lim
(x,y)→(0,0)

r2 sin θ cos θ

r
= lim

(x,y)→(0,0)
r sin θ cos θ.

Since the absolute value of sin θ cos θ is at most 1, we have −r ≤ r sin θ cos θ ≤ r.

Since as (x, y)→ (0, 0) both −r and r approach 0, by the Squeeze Theorem we have

lim
(x,y)→(0,0)

f(x, y) = lim
(x,y)→(0,0)

r sin θ cos θ = 0.

This is what we needed to show.

Since the definition of f has a special case at (0, 0), to compute the partial derivatives

of f at (0, 0) we will go back to the definition of partial derivative:
∂f

∂x
(x0, y0) is found by

setting y to be a constant y0, differentiating the resulting function of x, and evaluating that
derivative at x0:
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For example, if we set y = 0, then the definition of f tells us that

f(x, 0) =

[{
0√
x2

if x 6= 0;

0 if x = 0.

]
= 0.

f(x, 0) = 0
∂f

∂x
(x, 0) = 0

∂f

∂x
(0, 0) = 0

f(0, y) = 0
∂f

∂y
(0, y) = 0

∂f

∂y
(0, 0) = 0

Recall that

f(x, y) =

{
xy√
x2+y2

if (x, y) 6= (0, 0);

0 if (x, y) = (0, 0).

If (x, y) 6= (0, 0) then
∂f

∂x
(x, y) =

y2

(x2 + y2)
3
2

Show that
∂f

∂x
is not continuous at (0, 0).

If y = 0 then
∂f

∂x
= 0, so as (x, y)→ (0, 0) along the x-axis,

∂f

∂x
approaches 0.

If x = 0 and y > 0, then
∂f

∂x
= 1 so as (x, y) → (0, 0) along the positive y-axis,

∂f

∂x
approaches 1.

This shows that
∂f

∂x
is not continuous at (0, 0).

Now f has partial derivatives at (0, 0) but they are not continuous there, so we do not
know whether the graph of f has a tangent plane at (0, 0, 0). Sketch the intersection of the
graph of f with the plane x = y. Note that this plane contains the vertical z-axis and the
horizontal line x = y, which intersect at (0, 0); you can start by putting them in your sketch.

If you can’t picture immediately what this curve looks like, you might start by parametriz-
ing it, using x = t. Hint: Your parametrizing function will have a different definition when
t ≤ 0 and when t ≥ 0, because

√
t2 = ±t.

If that still doesn’t give you the picture, try differentiating your parametrizing function
~r to see what the tangent vectors look like at various points.

This intersection is given by x = y and z =
x2

√
2x2

=
x2

|x|
√

2
=
|x|√

2
. It looks like the

graph of y = |x|; it has a sharp corner at the origin.

This should tell you that the graph of f does not have a tangent plane at (0, 0, 0).
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