Math 11 Section 1

September 26, 2012
Sample Solutions
(1.) Last time we saw that $\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)$ is the vertical slope of the intersection of the graph of f with the plane $y=y_{0}$, so that $\left\langle 1,0, \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\right\rangle$ is a vector tangent to the graph of f at the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$. Similarly the vector $\left\langle 0,1, \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right\rangle$ is tangent to the graph of f at the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$.

Use this to find two vectors tangent to the graph of the function $f(x, y)=x^{2}-x y+y^{2}$ at the point $(1,-1,3)$.

$$
\begin{aligned}
& \left\langle 1,0, \frac{\partial f}{\partial x}\right\rangle=\langle 1,0,2 x-y\rangle=\langle 1,0,3\rangle \\
& \left\langle 0,1, \frac{\partial f}{\partial y}\right\rangle=\langle 0,1,-x+2 y\rangle=\langle 0,1,-3\rangle
\end{aligned}
$$

Find a vector normal to the graph of the function $f(x, y)=x^{2}-x y+y^{2}$ at the point $(1,-1,3)$.

$$
\langle 1,0,3\rangle \times\langle 0,1,-3\rangle=\langle-3,3,1\rangle
$$

Find an equation for the plane tangent to the graph of the function $f(x, y)=x^{2}-x y+y^{2}$ at the point $(1,-1,3)$.

This is the plane containing the point $(1,-1,3)$ with normal vector $\langle-3,3,1\rangle$. Its equation is $\langle-3,3,1\rangle \cdot\langle x-1, y-(-1), z-3\rangle=0$, or $-3 x+3 y+z=-3$.
(2.) Applying this same reasoning to any function f gives us the fact that if f has a tangent plane at $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$, then that tangent plane is given by

$$
z=f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) .
$$

We can use this to get a linear tangent approximation to $f(x, y)$: If (x, y) is near $\left(x_{0}, y_{0}\right)$, then

$$
f(x, y) \approx L(x, y)=f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) .
$$

(This should look a lot like the tangent line approximation to a function $f(x)$.)
Use this method, applied to the function $f(x, y)=x e^{y}$ near the point $(2,0)$, to approximate (2.005) $e^{-.01}$.

First we compute
$\frac{\partial f}{\partial x}(x, y)=e^{y} \quad \frac{\partial f}{\partial y}(x, y)=x e^{y}$.
Using $\left(x_{0}, y_{0}\right)=(2,0)$, we get that if (x, y) is near $(2,0)$, then

$$
\begin{aligned}
& f(x, y) \approx L(x, y)=f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)= \\
& 2 e^{0}+\left(e^{0}\right)(x-2)+\left(2 e^{0}\right)(y-2)=2+1(x-2)+2(y-0) . \\
& (2.005) e^{-.01}=f(2.005,-.01) \approx 2+1(2.005-2)+2(-.01-0)=2+.005-.02=1.985 .
\end{aligned}
$$

(3.) A theorem from the text tells us that the graph of $f(x, y)$ does have a tangent plane at $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ if the partial derivatives of f are continuous on some disc containing $\left(x_{0}, y_{0}\right)$.
(The graph does not have a tangent plane if the partial derivatives of f are undefined at $\left(x_{0}, y_{0}\right)$. If the partial derivatives of f are defined at the point but not continuous on any disc containing the point, the graph may or may not have a tangent plane.)

Consider the function

$$
f(x, y)= \begin{cases}\frac{x y}{\sqrt{x^{2}+y^{2}}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Show that f is continuous at $(x, y)=(0,0)$.
We must show that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=f(0,0)=0$. From the definition of f,

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{x^{2}+y^{2}}} .
$$

We can analyze this limit in different ways; perhaps the easiest is to use polar coordinates:
$\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{x^{2}+y^{2}}}=\lim _{(x, y) \rightarrow(0,0)} \frac{r^{2} \sin \theta \cos \theta}{r}=\lim _{(x, y) \rightarrow(0,0)} r \sin \theta \cos \theta$.
Since the absolute value of $\sin \theta \cos \theta$ is at most 1 , we have $-r \leq r \sin \theta \cos \theta \leq r$.
Since as $(x, y) \rightarrow(0,0)$ both $-r$ and r approach 0 , by the Squeeze Theorem we have
$\lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim _{(x, y) \rightarrow(0,0)} r \sin \theta \cos \theta=0$.
This is what we needed to show.
Since the definition of f has a special case at $(0,0)$, to compute the partial derivatives of f at $(0,0)$ we will go back to the definition of partial derivative: $\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)$ is found by setting y to be a constant y_{0}, differentiating the resulting function of x, and evaluating that derivative at x_{0} :

For example, if we set $y=0$, then the definition of f tells us that

$$
\begin{aligned}
& f(x, 0)=\left[\left\{\begin{array}{ll}
\frac{0}{\sqrt{x^{2}}} & \text { if } x \neq 0 ; \\
0 & \text { if } x=0 .
\end{array}\right]=0 .\right. \\
& f(x, 0)=\underline{0} \quad \frac{\partial f}{\partial x}(x, 0)=\underline{0} \quad \frac{\partial f}{\partial x}(0,0)=\underline{0} \\
& f(0, y)=\underline{0} \quad \frac{\partial f}{\partial y}(0, y)=\underline{0} \quad \frac{\partial f}{\partial y}(0,0)=\underline{0}
\end{aligned}
$$

Recall that

$$
f(x, y)= \begin{cases}\frac{x y}{\sqrt{x^{2}+y^{2}}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

If $(x, y) \neq(0,0)$ then $\frac{\partial f}{\partial x}(x, y)=\frac{y^{2}}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}$
Show that $\frac{\partial f}{\partial x}$ is not continuous at $(0,0)$.
If $y=0$ then $\frac{\partial f}{\partial x}=0$, so as $(x, y) \rightarrow(0,0)$ along the x-axis, $\frac{\partial f}{\partial x}$ approaches 0 .
If $x=0$ and $y>0$, then $\frac{\partial f}{\partial x}=1$ so as $(x, y) \rightarrow(0,0)$ along the positive y-axis, $\frac{\partial f}{\partial x}$ approaches 1 .

This shows that $\frac{\partial f}{\partial x}$ is not continuous at $(0,0)$.
Now f has partial derivatives at $(0,0)$ but they are not continuous there, so we do not know whether the graph of f has a tangent plane at $(0,0,0)$. Sketch the intersection of the graph of f with the plane $x=y$. Note that this plane contains the vertical z-axis and the horizontal line $x=y$, which intersect at $(0,0)$; you can start by putting them in your sketch.

If you can't picture immediately what this curve looks like, you might start by parametrizing it, using $x=t$. Hint: Your parametrizing function will have a different definition when $t \leq 0$ and when $t \geq 0$, because $\sqrt{t^{2}}= \pm t$.

If that still doesn't give you the picture, try differentiating your parametrizing function \vec{r} to see what the tangent vectors look like at various points.

This intersection is given by $x=y$ and $z=\frac{x^{2}}{\sqrt{2 x^{2}}}=\frac{x^{2}}{|x| \sqrt{2}}=\frac{|x|}{\sqrt{2}}$. It looks like the graph of $y=|x|$; it has a sharp corner at the origin.

This should tell you that the graph of f does not have a tangent plane at $(0,0,0)$.

