Your name:
Instructor (please circle): Barnett Van Erp
Math 11 Fall 2010: written part of HW9 (due Mon Nov 29)
Please show your work. No credit is given for solutions without justification.
(1) $[8$ points]
(a) Let $\mathbf{F}=\left(2 x y, x^{2}+2 y z, y^{2}\right)$ be a vector field in \mathbb{R}^{3}. Is there a scalar field f such that $\nabla f=\mathbf{F}$? Explain.
(b) Is there a vector field \mathbf{G} such that $\nabla \times \mathbf{G}=\mathbf{F}$? Explain.
(c) Let C be the triangle formed by the boundary of the plane $x+y+z=1$ restricted to the first octant, traversed in a counter-clockwise sense when viewed in the $x y$-plane. Evaluate $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$. If you make use of one of your above answers (and we suggest you do), explain how.
(2) [8 points] Let S be the part of the sphere of radius 2 centered at the origin, lying in the region $y \geq 0$, $z \geq 0$. Compute $\iint_{S} y z d S$
(3) [10 points] Let S be the part of the paraboloid $z=x^{2}+y^{2}$ with $z \leq 1$, with surface normal oriented upwards. Let \mathbf{F} be the vector field $(x z, y z, 1)$
(a) Evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$
(b) Use this to evaluate $\iint_{T} \mathbf{F} \cdot d \mathbf{S}$ where T is the entire surface of the solid truncated paraboloid bounded by $z=x^{2}+y^{2}$ and $z=1$, with surface normal everywhere oriented outwards:

