Your name:

Instructor (please circle):

Barnett

Van Erp

Math 11 Fall 2010: written part of HW9 (due Mon Nov 29)

Please show your work. No credit is given for solutions without justification.

- (1) [8 points]
 - (a) Let $\mathbf{F} = (2xy, x^2 + 2yz, y^2)$ be a vector field in \mathbb{R}^3 . Is there a scalar field f such that $\nabla f = \mathbf{F}$? Explain.

(b) Is there a vector field **G** such that $\nabla \times \mathbf{G} = \mathbf{F}$? Explain.

(c) Let C be the triangle formed by the boundary of the plane x + y + z = 1 restricted to the first octant, traversed in a counter-clockwise sense when viewed in the xy-plane. Evaluate $\oint_C \mathbf{F} \cdot d\mathbf{r}$. If you make use of one of your above answers (and we suggest you do), explain how.

(2) [8 points] Let S be the part of the sphere of radius 2 centered at the origin, lying in the region $y \ge 0$, $z \ge 0$. Compute $\iint_S yz \, dS$

(3) [10 points] Let S be the part of the paraboloid z = x² + y² with z ≤ 1, with surface normal oriented upwards. Let F be the vector field (xz, yz, 1)
(a) Evaluate ∬_S F ⋅ dS

(b) Use this to evaluate $\iint_T \mathbf{F} \cdot d\mathbf{S}$ where T is the *entire* surface of the solid truncated paraboloid bounded by $z = x^2 + y^2$ and z = 1, with surface normal everywhere oriented *outwards*: