Your name:
Instructor (please circle): Barnett Van Erp

Math 11 Fall 2010: written part of HW4 (due Wed Oct 20)

Please show your work. No credit is given for solutions without justification.
(1) [8 points] A spaceship is traveling in space when its engines fail. Without the engines the ship starts to drift towards a star. The temperature in space changes according to the function

$$
T(x, y, z)=\frac{4,900}{2 x^{2}+y^{2}+z^{2}} .
$$

The engineers are able to restart the engine when they are at position $(1,2,1)$.
(a) [3 points] Calculate the direction in which they should proceed to cool the spaceship most rapidly. Express your answer in the form of a unit vector.
(b) [2 points] At what rate (degrees per unit distance) will it cool if they go in that direction?
(c) [3 points] At the present speed, the ship should not cool of at a rate that exceeds 300 degrees per unit distance. This means that the ship can not travel in the direction you found in item (a). Find the angle θ between the direction of maximum decrease of the temperature T and the direction in which the temperature decreases at exactly 300 degrees per unit distance. (Note: the position of the ship is still at coordinates $(1,2,1)$.)
(2) [8 points] A sphere with center $(3,5,2)$ and radius $\sqrt{21}$ can be represented as the level surface $g(x, y, z)=21$ of the function of three variables

$$
g(x, y, z)=(x-3)^{2}+(y-5)^{2}+(z-2)^{2} .
$$

The graph $z=f(x, y)$ of the function of two variables

$$
f(x, y)=x^{2}+2 y^{2}
$$

is a surface called an elliptic paraboloid.
These two surfaces intersect at the point $(x, y, z)=(1,1,3)$. Determine whether the two surfaces are tangent at this point. In other words: determine if the tangent plane to the sphere at point $(1,1,3)$ is the same plane as the tangent plane to the elliptic paraboloid at this point. Explain your answer.
(3) $[10$ points]
(a) [3 points] Find all critical points of the function $f(x, y)=x^{2}+y^{2}+x^{2} y+4$.
(b) [3 points] For each critical point, determine whether it is a local maximum, a local minimum, or a saddle point.
(c) [4 points] Find the absolute maximum of the function $f(x, y)$ on the set

$$
D=\{(x, y) \mid 0 \leq x \leq 2,-2 \leq y \leq 0 .\}
$$

