## Math 11 Fall 2010: written part of HW2 (due Wed Oct 6)

Please give your working. The space indicates the relative weight of each question sub-part.

1. [11 points]
(a) Write in the form $a x+b y+c z+d=0$ the equation for the plane passing through the points $(1,0,0),(3,1,0)$, and $(1,-1,1)$.
(b) Find the distance from the origin to the plane $\mathbf{r} \cdot \mathbf{n}=4$ where $\mathbf{n}=(1,2,3)$.
(c) Find the location where the plane in part (b) is intersected by the line which passes through the points $(2,6,6)$ and $(4,10,12)$.
(d) Is this above line orthogonal to the plane in part (b)?
2. [8 points] A point particle starts at the origin at $t=0$ with a speed of 1 moving in the direction of the positive $x$-axis. The particle experiences a constant acceleration vector $(0,1,2)$.
(a) Compute the position vector as a function of time $t$
(b) Consider a particle with position vector $\left(2+t, 1+t^{2} / 2, t^{2}\right)$. Compute the unit tangent vector at time $t=1$.
(c) For the particle in part (b), compute the curvature $\kappa$ as a function of time $t$.
3. [6 points]
(a) Compute the arclength of the space curve defined by $\left(e^{-t} \cos t, 0, e^{-t} \sin t\right)$ for $0 \leq t<\infty$
(b) Compute the unit normal vector $\mathbf{N}$ at the point $\left(0,0, e^{-\pi / 2}\right)$ on this space curve.
