Math 11 Fall 2010: written part of HW1 (due Wed Sept 29)

Please give your working. The space indicates the relative weight of each question sub-part.

1. [10 points]
(a) A force of size 10 pulls at an angle of 60° to the x-axis on an object that moves from location $(5,1)$ to location $(1,1)$. How much work is done by the force?
(b) Find a unit vector orthogonal to the vectors $\mathbf{a}=(1,2,3)$ and $\mathbf{b}=(1,0,-1)$.
[BONUS: How many such unit vectors exist?]
(c) Find the volume of the parallelepiped formed by the vectors \mathbf{a} and \mathbf{b} above, and a third vector $\mathbf{c}=(2,1,0)$
2. [7 points] A planar wall is described by its normal vector \mathbf{n}. After a particle with incoming velocity vector \mathbf{v} bounces elastically off this wall, its outgoing velocity vector is $\mathbf{u}=\mathbf{v}-2 \operatorname{proj}_{\mathbf{n}} \mathbf{v}$.
(a) What outgoing velocity does a particle with incoming velocity $(1,2,3)$ have after bouncing off a wall whose normal is $(1,0,-1)$?
(b) Show that for a general \mathbf{v} and \mathbf{n} the speed (magnitude of velocity vector) is unchanged by the bounce. [Hint: Use the formula for $\operatorname{proj}_{\mathbf{n}} \mathbf{v}$ and then compute $\mathbf{u} \cdot \mathbf{u}$. Then show that this is equal to $\mathbf{v} \cdot \mathbf{v}$.]
3. [10 points]
(a) Find the equation for a sphere with center $(4,-2,1)$ which also passes through the point $(8,1,1)$
(b) Find the radius and center of the circle given by the intersection of this sphere with the $y z$ coordinate plane.
(c) The vector equation $(\mathbf{r}-\mathbf{a}) \cdot(\mathbf{r}-\mathbf{b})=0$ describes a sphere. If $\mathbf{a}=\langle 2,0,5\rangle$ and $\mathbf{b}=\langle 6,4,3\rangle$, find the center and radius of the sphere. [Hint: you may want to use Cartesian coordinates $\mathbf{r}=\langle x, y, z\rangle$]
