
Math 116 : Homework 3

due Tues Feb 21

Some of this HW is with pencil and paper (don’t bother putting that online). Please label your plots. Qu.
1 is a series of refreshing little warm-ups; each part requires only a few lines of code (in Matlab, at least).
Qu. 2 is the combined-field modification to scattering BIE (displaced Qu. 3 from HW2)—in some ways the
culmination of the techniques from this course, so do do it, ask if stuck. Qu. 3 is simpler than BIE methods,
and I think you’ll enjoy it.

1. Trigonometric interpolation and integration of 1D periodic functions.

(a) Show that the Lagrange polynomial for trigonometric interpolation lk(t) = 1
2n

∑′
m eim(t−tk) can

be written 1
2n

cot
(

t−tk

2

)

sinn(t − tk).

(b) Plot over the domain [0, 2π] the function l5(t) when n = 10, and superimpose the grid points {tk}
shown as blobs. Does it vanish in the right places? (Note: for plotting, you’ll want to sample t
at least 10 times finer than the grid points themselves).

(c) With n = 10, compare the periodic analytic function f(t) = esin x with its trigonometric interpola-

tion fn(t), by plotting the difference between the two. Beautiful, eh? [Hint: fn(t) =
∑2n−1

j=1 yj lj(t).
Also note matlab arrays start at 1 but your points are labeled j = 0 · · · 2n − 1]. Repeat for the
periodic continuous function f(t) = |t − π|. Comment.

(d) Study the convergence with n of the uniform-grid, uniform-weight quadrature rule to approximate

I =
∫ 2π

0

(

1 + cos2(t/2)
)−1

dt. How large does n need to be before 15 digits, which you should
quote, are correct? Make a log-linear plot of difference from ‘exact’ vs n = 1, 2, . . ., and add to
your plot a line with slope given by the bound in the theorem of Lecture 6. [Hint: Remember
there are 2n points when you apply the theorem]. How close is the convergence rate to this bound?

(e) Here’s an instructive example of what you need for Qu. 2. We wish to approximate I =
∫ 2π

0
K(t)τ(t)dt, with K(t) = Y0

(

3 sin |t−π|
2

)

, and a given periodic analytic function τ . Let’s split

K(t) = K1(t) ln
(

4 sin2 t−π
2

)

+ K2(t), so that both K1(t) and K2(t) are periodic analytic. This

could be done many ways; do it so that K1(t) = bJ0

(

3 sin |t−π|
2

)

, where b is some constant. The

use of the J0 ensures analyticity. Use the small-argument asymptotics Y0(z) ∼ 2
π

(

ln z
2 + C

)

+O(z),
and J0(z) ∼ 1 + O(z2) to find b. Also find the value K2(π) = limt→π K2(t) (analogous to your
‘diagonal’ value of the kernel M2(s, s) from Lecture 9).

(f) Choose τ(t) = esin t. Use uniform-weight quadrature to approximate I2 =
∫ 2π

0 K2(t)τ(t)dt. Note
the log singularity is at π which is always the grid-point tn, so at this point you’ll need the value

K2(π) you found above (at others use K2(t) = K(t) − bJ0

(

3 sin |t−π|
2

)

ln
(

4 sin2 t−π
2

)

). Check

K2(t) is indeed smooth, debug if not. Use logarithmic weights R
(n)
j (π) from end of Lecture 10

to approximate I1 =
∫ 2π

0 K1(t)τ(t)dt. Check I1 and I2 converge exponentially by increasing n as
earlier. What is I = I1 + I2, to 14 digits? [Hint: Euler constant C is -psi(1) in matlab. To
debug your code I suggest comparing against a crude integration; your answer should be around
1.9]

2. ‘Combined-field’ modification to cure interior resonance problem for Helmholtz 2D scattering BIE.
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(a) Modify your BIE code to fix the resonance problem from HW2 using a double-layer plus imaginary
amount of single-layer representation, as described by Kress1, see Eqn (1.12). This will require
you splitting the logarithmic singularity according to Eqn (2.5), (2.6), and using the quadrature
scheme given by Eqn (3.1). Essentially all you need to do is replace your K̃ matrix with the sum
of two matrices as at the end of Lecture 9’s notes (careful; there may be a factor 2π discrepancy

in definition of R
(n)
j between lectures 9 and 10). Check M2(s, t) and M1(s, t) are continuous.

Choose η = k as suggested.

(b) Redo the plot of condition number vs k around the resonant k range— has the problem gone
away?

(c) Check that the new code gives the same exterior field u(x) as the original one (by plotting the
difference), for a nonsingular k value.

3. Finding Dirichlet eigenmodes with the Method of Patricular Solutions (MPS).

(a) Write a function which returns the jth basis function ξj evaluated at either a point (x1, x2) or

a list of such points. For basis functions use N plane waves: N/2 of the form sin(kd̂ · x) then

another N/2 of the form cos(kd̂ · x), where the N/2 unit vectors d̂ are spread uniformly in [0, π).

(b) Make a function which fills the matrix Ajk := ξk(yj), j = 1 · · ·M , k = 1 · · ·N , where {yj} are
the M boundary points of a mellower version of your trefoil shape you used for BIE: f(θ) =

1 + 0.1 cos(3θ). Make a similar function which fills the matrix Ajk := ξk(y
(I)
j ), j = 1 · · ·M ,

k = 1 · · ·N , where {y
(I)
j } are M random interior points (they needn’t even be uniformly sampled).

(c) Choose N = 20. Loop over k ∈ [2, 10], computing at each k the generalized eigenvalue λ(k) given
by

Fx = λ(k)Gx,

with F = AT A and G = BT B. Plot λ vs k. At what k values does it vanish? [Bonus: what
happens if N is varied?]

1 Rainer Kress, “Boundary integral equations in time-harmonic acoustic scattering”, Mathematical and Computer Modelling
15(3–5) 229–243 (1991). This is available through Dartmouth’s library system electronically, or through me.


