Adaptive Interior Laplace BVP

Dan Fontaine

December 10, 2008

1 Laplace Boundary Value Problem

In this paper I will apply adaptive quadrature to solve an interior Dirichlet
boundary value problem. We will solve the double-layer operator

0%(z,y)
(D7) () := /aQ a—nnT(y)dsy
where ®(z,y) = —1/(27)In|z — y| is the fundamental solution for the

Laplace equation. Our domain €2 will be defined to be the interior of the
curve defined by y(t) = (R(t) cost, R(t)sint), R(t) = 1 + .3 cos 3t.

15

1o

0.5

0.0

05}

1.0}

We will use a boundary value problem with known solution w(z,y) =
cos(z)eY, so our Dirichlet boundry data is f = u|gq. To solve this problem at
a point z in the interior of 2 we integrate over 92 using periodic quadrature

with equal node spacing. But we first must solve for the density 7 at the
nodes using the 2nd-order Fredholm equation

(I —2D)r = =2f

We do this by using the Nystom method. We construct the Nystrom matrix
using the following python code:

def nystromMatrix(T, W, y, dy, ddy, ny):
k = curvature(T, dy, ddy, ny)

lengthOfT = len(T)
D = zeros((lengthOfT, lengthOfT))
for i in range (0, lengthOfT):
for j in range(0, lengthOfT):
speed = sqrt(dot(dy[j], dy[j]))

if 1 — j:
D[j, j] = —k[j] * W[j]
* speed / (4. % pi
else:
D[i, j] = fundSolDeriv(
v[i], v[3], ny[i]) =
W[j] * speed

return D

Notice that computing %ﬁy) along the diagnol produces a singularity,

so we fill the diaganol by computing the curvature x(t) for ¢ € [0,27) cor-

responding to the position of our nodes. Here is the code for computing
curvature

def curvature(t, dy, ddy, ny):

num = zeros(size(t))

den = zeros(size(t))

for j in range(0, size(t)):
ny[3] /= dot(ny[3], ny[j]) *s.5
pun]3] = dot (ny[3], ady[3])
den[j] = dot(dy[j], dy[j])

k = —num / den

return k

and here is the code for %:

n

def fundSolDeriv(x, y, ny):
if size(shape(x)) < 2: x = x.reshape(l, len(x))
m = shape(x)[0]

s = (x — kron(ones ((7))

n = kron(ones((m, 1)

r = sqrt(multiply(s,s).sum(axis=1))
costh = multiply(n,s).sum(axis=1) / r
nd = (1/(2%pi))*costh / r;

nd = nd.reshape(m, 1)

return nd

m, 1))
), ny)

Once we have solved for 7 at the nodes, we can integrate over our domain
2 using periodic quadrature. Since we known an exact solution for our
BVP we can compute the absolute error between our solution and the true
solution. Below is a plot of the log of the absolute error of our solution. We
have plotted over a grid with x and y ranging from -1.3 to 1.3 with a step
size of 0.05 and N = 50 quadrature points.

1.5 11.50

8.75
1.0}

6.00
05} 3.25

0.50
0.0}

2.25
0.5F 5.00

7.75
1.0}

-10.50

13.25

133

Notice the obvious problem with our solution. We have excellent accu-
racy in the center of €2, but as we move towards the boundary, the error
rapidly approach O(1). This problem arises in the computation of %.

n

Computing %ﬁ;y) requires dividing by |x —y| and, therefore, as = approaches
the boundary, %ﬁy) blows up. Consider the point near the boundary below:

Evaluating our solution at this point requires evaluating the integral of the
following curve. This curve represents %ﬁy) with = (1.05,0.3) evaluated
at the nodes along the boundary.

3.0 T T T T T T

25F

15}

10|

0.0F

-0.5

There is a sharp spike in the curve as the boundary nodes move close to «
and then the curve moderates again as the nodes move away from x. Hence,
most of the area under the curve is concentrated below the spike. This is
the source of the error near the boundary. The choice of a quadrature sheme
with equally spaced nodes is inadequate to accurately evaluate integrals with
a sharp spikes as the one above. Accurate evaluation of our BVP near the
boundary will require adaptive quadrature methods to better handle erratic
behavior of the boundary integral.

2 Adaptive Quadrature

Adaptive quadrature is a method that can be used with any quadrature
scheme to refine the integration of a function to arbitrarily precision. This
is achieved by adaptively breaking up the interval of integration into subin-
tervals near rapidly changing sections of the function. The algorithm for
adaptive quadrature is quite simple. We first integrate the function over
the entire interval using the desired quadrature scheme. We then subdivide
the interval into two equal parts and reevaluate the integral over these sub-
domains. If the original intergal is within some tolerance of the sum of the
integrals of the subintervals, then we return. Otherwise we recursively per-
form adaptive quadrature on each subinterval. Below is the code for adaptive
quadrature.

def adaptiveQuadrature(func, params, a, b, tol,
quadRule):
N =28
X, W = quadRule(N, a, b)
Q = dot(func(X, params), W)

if depth >= 500: return Q

m= (b+a) / 2.
if m < a or m > b: return (@

I

X, W = quadRule(N, a, m)
Q1 = dot(func(X, params), W)
X, W = quadRule(N, m, b)

), W

)

if abs(Q — (Q1 + Q2)) < tol: return Q1 + Q2

Q2 = dot(func(X, params

b}

Q = adaptiveQuadrature(func, params, a, m, tol,
quadRule) + adaptiveQuadrature(func, params
, m, b, tol, quadRule)

return Q

def gaussianQuad(N, a, b):
beta = .5/numpy.sqrt (1. —(2.*%(numpy.arange(1l, N)
))ex(—2.))
T = numpy.diag(beta,l) + numpy.diag(beta,—1);
D, V = scipy.linalg.eig(T);
x = numpy.real(D)
i = x.argsort(axis=0)
x.sort (axis=0)
w = 2.xV[0].take(1)*%2.

x (b —a) + a

>
|
—~
b
+
T =
;/
\
[\

return x, w

In the implementation above I am using a gaussian quadrature scheme
with 8 nodes on each subinterval. Also notice that I have included a max-
imum recursion depth. This prevents the program from terminating mid-
computation due to exceeding system stack limits.

The effect of performing adaptive quadrature is that we can ’clump’
quadrature points near problematic regions of the function and leave only
a sparse number of quadrature points along the rest of domain. This al-
lows us to integrate a function up to any desired precision while keeping the
number of quadrature points small.

Using adaptive quadrature on our BVP, however, requires one additional
step. The adaptive quadrature routine must be able to select nodes at any
point along 0€2. Currently we only have values for 7 at the original 50 nodes
we chose. We can make 7 into a continuous function by solving an equation
from the derivation of the Nystrom method.

T(x) -2 Z k(z, y;)mW; = =2f(x)

Which gives us:

7(7) =2 Z k(z, y;)miW; —2f(z)

Here is the code for computing the density 7:

def density(x, info):
s =0
for j in range (0, len(info.y)):
speed = sqrt(dot(info.dy[j], info.dy]j
1))
s += fundSolDeriv(x, info.y[j], info.ny
[j]) * info.weights[j] * speed x
info.tau[j]

z = —2. % info.f + 2. x s.ravel()
return z

Here is the code for the function we are passing to adaptiveQuadrature
for integration:

def ker(t, kernellnfo):
info = kernellnfo.densityInfo
info.f = f(t)
x = kernelInfo.x

y = row_stack ([R(t)*cos(t), R(t)*sin(t)]).T
ny = normal(t)

den = density(y, info)

sp = speed(t)

N = len(t)
z = zeros(N)
for j in range (0, N):
z[j] = fundSolDeriv(x, yl[j], ny[]j]) *

den[j] * sp[j]

return =z

Now we can again evaluate the BVP over (), this time, using adaptive
quadrature.

1.5

0.3
1.0} 1.8

-3.3
05}

-4.8
0.0} 6.3

7.8
05} 93

-10.8
-1.0F

-12.3

-13.8

133

Here I have used a tolerance of 107!°. We can see this reflected in the
plot as the error in our solution is less than 1071° over the entire interior of
Q). Below is a plot of the boundary integral with the spike from the previous
section evaluated to an accuracy of 10 digits at a recursive depth of 8. We
can see how the adaptive quadrature method has distributed most of the
nodes near the spike.

3.0 T T T T T T

And here are the nodes drawn along the boundary of Q with a cross
marking the position of the point x we are evaluating at.

1.5 T T T T

1.0}

05}

0.0

0.5

1375 05 0.0 05 1.0 15

Despite the significant gains adaptive quadrature has provided us in ac-
curacy near the boundary, there is a significant price to pay in computational
time. Our initial solution to the Laplace BVP without adaptive quadrature
runs in approximately 1 second. By comparison, the solution with adaptive
quadrature requires about 1 hour and 15 minutes to compute. This is with a
rather modest grid of 52 by 52 points. A significant factor in this increased
computational time is the inability to vectorized the adaptive algorithm. In
the non-adaptive case we can vectorize our integration by passing an en-
tire column of our grid to the integration routine to be processed using fast
vector algebra routines. With adaptive quadrature, however, the adaptive
algorithm chooses nodes based on the point x that is currently being evalu-
ated. For this reason, we can only pass one grid point to be integrated at a
time.

Below is a plot that shows the number of quadrature points required to
achieve 10 digits of accuracy vs the distance along the x-axis as we approach
the boundary. This plot is achieved by sampling 100 points along the x-axis
in the interval [0.0, 1.3). The smooth curve is a plot of 8logs(N), where N is
is the number of nodes.

150 T T T T T T

140

130

120

110

100

90

80

)

1.4

10

This illustrates that the computational effort grows logarithmically as we
approach the boundary. This fit holds until we get very close to the boundary
at which point we see a sudden jump. It is possible that we see this jump
very close to the boundary because the spike in the integrand is so severe that
our subintervals approach machine precision without satisfying the required
tolerance. Here we have chosen to fit our data with 8logs(/N) because we
split our intervals in two at each step giving us base 2 and we split each
subinterval up into 8 nodes. Also notice that this data isn’t distance to the
boundary vs nodes as we would like. Instead we have distance along the x-
axis which doesn’t approach the boundary uniformely do to the wobble in our
domain. Hence, this data likely has more noise than a plot that represented
true distance to the boundary.

Notice that the number of required nodes starts at around 80 at the point
(0, 0). The non-adaptive plot has an accuracy of 11 digits in this region with
only the original 50 nodes. This indicates that for points sufficiently far
away from the boundary, we do not need to perform adaptive quadrature.
If we consider points along the x-axis, we don’t need to perform adaptive
quadrature on the interval [0,0.5]. If we write a routine to determine the
true distance to there boundary, we may be able to skip adaptive quadrature
on a significant portion of our grid giving us a significant speedup in the
overall computation.

11

