Math 116 Numerical PDEs: Homework 7

due Fri midnight, Nov 14

Here you implement the Method of Particular Solutions (MPS) for Ω the triangle with corners (0,0), (1,0) and (1, tan β) where β is the corner angle at the origin. First a BVP then an eigenvalue problem.

- 1. Consider the Fourier-Bessel basis $\phi_n(x) = J_n(kr)e^{in\theta}$, for $-N \le n \le N$, which satisfies the Helmholtz equation at wavenumber k. Use this to solve the interior Helmholtz BVP with Dirichlet data $f = u|_{\partial\Omega}$ from the exact solution $u(x) = 5iH_0(k|x-x_0|)$, with $x_0 = (0, 2)$, and k = 10, as follows.
 - (a) Make a function which returns the *n*th function in the set evaluated at a list of points x (a 2-by-*m* coordinate array), with wavenumber k. Try to vectorize it.
 - (b) Make a list of 3*M* boundary quadrature nodes y_j and weights w_j using *M*-point Gaussian quadrature on each side of the triangle (duplication at corners is okay). Use your above function to fill columns of the matrix *A*, with elements $A_{j,n+N+1} = \sqrt{w_j}\phi_n(y_j)$. Fill a rhs vector with $\sqrt{w_j}f(y_j)$ and solve the least-squares linear system for the coefficients α_n .
 - (c) Plot the resulting sum of basis functions over the domain. For $\beta = \pi/3$, k = 10, M = 30, and N = 30, plot a color image of \log_{10} of the error over a rectangle enclosing the domain, showing the color range [-16,0]. How does the interior error distribution compare to your BIE method?
 - (d) With other parameters fixed, plot, and classify, the convergence of absolute error in the approximate solution at interior point x = (0.7, 0.5) vs N.
 - (e) What does the condition number do as N increases? How about the coefficient norm $\|\alpha\|$? How come the solution reaches the accuracy it does?
- 2. For the eigenvalue problem you may keep most of the above code. Fix M = 30, N = 20, and $\beta = \pi/3$.
 - (a) Set up 90 points z_j randomly chosen uniformly inside the triangle. Fill the matrix B with entries $B_{j,n+N+1} = \phi_n(y_j)$. Use the following Matlab code (also online) to compute the generalized eigenvalues μ and eigenvector matrix V of the matrix pair A^*A , B^*B :

[V,D] = eig(B'*B); D = diag(D); i = find(D > 1e-14*max(D)); V = V(:,i) .* repmat(1./sqrt(D(i)).', [size(B,2) 1]); F = V'*A'*A*V; [W mu] = eig((F+F')/2); % projects out numerical Nul(B) mu = diag(mu); V = V*W;

The lowest μ should be the first in the list, and its eigenvector in V(:,1).

- (b) For 4 < k < 15 plot the square-root of the minimum μ as a function of k. You should see ten local minima, giving the Dirichlet eigenvalues.
- (c) For k = 5.54126 reconstruct the eigenfunction using the coefficients in the eigenvector. Choose a color scale to illustrate its size inside the triangle.
- (d) BONUS: find the first few eigenvalues to high accuracy by locally minimizing the lowest generalized eigenvalue μ as a function of k.