Math 116 Numerical PDEs: Homework 6

due Fri midnight, Nov 7

This week you are coding! Questions 2–5 build on HW5, and on each other, in incremental steps, so always try to extend/tweak your existing code.

- 1. [Jon's question] Rewrite your code from HW4 #1 (a) so that it can graph any function of the form $u(x) = \int_a^b k(x-y)f(y)dy$ on any interval [c, d].
- 2. Here you solve the interior Dirichlet BVP for Laplace's equation using the closed planar curve from last time with radial function in polar coordinates $R(t) = 1 + a \cos(3t)$, with $t \in [0, 2\pi)$, with a = 0.3.
 - (a) Code the formula for curvature $\kappa(t)$ in terms of R(t), R'(t), R''(t), and feed it the values for this radial function. Let t_j be nodes in the periodic trapezoid rule, as in HW5 #4. Plot $\kappa(t_j)$ for yourselves to check it gives what you expect. Make a function to fill the Nyström kernel matrix: diagonal elements via $\kappa(t_j)$, off-diagonal elements via your HW5 #4a function. Check the diagonal elements smoothly agree with those near the diagonal, by plotting a color image of the matrix; debug as needed.
 - (b) Let's use a BVP with known solution $u(x_1, x_2) = \cos(x_1)e^{x_2}$ which you can check is harmonic. Then its Dirichlet boundary data is $f = u|_{\partial\Omega}$, which you should use to fill a column vector of values $f(y_j)$. Solve the linear system corresponding to $(I - 2D)\tau = -2f$ to get the τ vector at the nodes. Tweak your code from HW5 #4 to compute the resulting solution field $u^{(N)}$ over the grid in $[-1.3, 1.3]^2$ with spacing 0.02, for N = 50. Produce a 2D color image showing $\log_{10} |u^{(N)} - u|$ with a color scale range [-16, 0]. How does the error vary inside the domain?
 - (c) For the fixed location x = (0.2, 0.1), show convergence vs N of this error on an appropriate plot, and state the convergence order or rate. [Note you shouldn't evaluate over the whole grid here].
- Now adjust your code to also solve the analogous BVP for the Helmholtz equation in the same Ω. [Warning: you are now using complex numbers, so to transpose an array you should use .' . Also graph-plotting only handles real-valued arrays.]
 - (a) Compute the DLP kernel $\partial \Phi(x, y) / \partial n_y$ given $\Phi(x, y) = (i/4)H_0(k|x-y|)$; note $H'_0(z) = -H_1(z)$. Give your HW5 #4a kernel function an extra k input argument and make it switch between Laplace and Helmholtz (which has the same diagonal part) using if k==0 ... else ... end.
 - (b) Fixing wavenumber k = 6, test with boundary data for the solution field $u(x) = 5iH_0(k|x x_0|)$, with 'source point' $x_0 = (0, 2)$ which is outside Ω . Produce the same \log_{10} error image as above. [Since special functions are slow computation will take about 5 sec].
 - (c) What now is the convergence order, or rate, at the fixed location x = (0.2, 0.1)? Is it as good as before? What does this suggest about the smoothness of the DLP kernel?
- 4. Make your code switchable to the exterior Helmholtz BVP, which is as simple as changing the signs in the BIE to $(I + 2D)\tau = 2f$.
 - (a) Use this to solve for the scattered field $u = u^i + u^s$ due to the incident plane wave $u^i(x) = e^{ik\hat{n}\cdot x}$ with wavenumber k = 10 and direction $\hat{n} = (\cos 0.2, \sin 0.2)$ reflecting from the domain Ω from before with Dirichlet boundary condition. Produce a 2D color image showing u over the region $[-4, 4]^2$; this should look familiar from the course flyer. In particular check by eye that $u_\partial \Omega$ is zero. BONUS: set the values inside Ω to zero since they are not physically relevant.

- (b) Since the solution is not known analytically, observe the convergence with N until you are confident in the first 4 significant digits of the total field u at the point (-2, 0) and quote them.
- 5. Here you explore the dependence on wavenumber k of the above Helmholtz kernel matrices—this will be quick since you already have a function for these.
 - (a) Plot a graph vs $k \in [0.1, 4]$ of the lowest singular value of the Nyströöm matrix for (I 2D) you used for the interior BVP. Locate as accurately as you can the lowest k where its condition number blows up.
 - (b) By choosing generic boundary data f, answer whether the actual physical solution to the interior BVP blows up near this k, or if it is merely a numerical effect.
 - (c) Plot a similar graph for the matrix (I + 2D) which you used in the exterior BVP. Locate as accurately as you can the lowest nonzero k where its condition number blows up.
 - (d) Answer as before whether the physical solution to the exterior BVP blows up near this k, or if it is merely a numerical effect?

Note: the k values you found in (a) are the Dirichlet eigenvalues of Ω , and in (c) the Neumann eigenvalues.