
Math 116 Numerical PDEs: Homework 2

due Fri midnight, Oct 10

Do not be put off by the apparent length; lots is just helpful text like this. However you’ll need to leave

some time for the coding; here questions build on previous ones. As before, post as much as you can to your

webpage, for instance including all your codes, which should be concise with the occasional comment.

1. [Jon’s question] The Taylor series for sin(x) about x = 0 is
∑

∞

n=0(−1)n x2n+1

(2n+1)! . Plot the convergence

of the error of this series from sin(x) as a function of N , the number of terms in the sum. Use as your
error measure the sup norm (maximum absolute value) over x ∈ [−π, π]. [Hint: first make a function
error(x, N) to evaluate at a given x the difference between the series, using N terms, and sin(x)]

2. Explain for each part why the two code versions give different answers, and why one is more accurate
(that is, closer to the true answer) than the other. [Hint: first run them; (a) gives you a clue to (b)!]

(a) way I: a = (1 + 3.4e-16) - 1.1e-16; a-1

way II: a = 1 + (3.4e-16 - 1.1e-16); a-1

(b) way I: x = 0.999; a = 0; for j=1:60000, a = a-x^j/j; end; a-log(1-x)

way II: x = 0.999; a = 0; for j=60000:-1:1, a = a-x^j/j; end; a-log(1-x)

You can check that this Taylor series has converged as accurately as it can to ln(1 − x) for
x = 0.999, i.e. that including more terms doesn’t fix the problem. (By the way, summing is a
terrible way to evaluate a slowly-converging series; there are much better acceleration methods. . . )

What is your conclusion about the best way to sum a list of numbers in floating-point arithmetic?

3. For the following problems, the algorithm stated is implemented on a machine obeying the floating-
point axioms. Deduce whether the algorithm is backward stable, stable, or unstable. [NLA 15.1]

(a) f(x) = 2x computed via x ⊕ x.

(b) f(x) = 1 + x computed via 1 ⊕ x.

4. Show that computing eigenvalues of a symmetric matrix is numerically unstable if it is done by evalu-
ating the characteristic polynomial det(A − λI) then solving for its roots. We may restrict to 2-by-2
diagonal matrices, for which the problem data is the diagonal entries, and the answer the eigenvalues
(a trivial problem!) i) Show that O(εmach) perturbation of the polynomial coefficients from those of
the identity leads to a much larger (how large?) change in the roots. ii) Thus explain why an algorithm
which relies on the above step is not stable according to our definition. [Excellent stable algorithms do
exist to compute eigenvalues; see [NLA]].

5. Make a Matlab function to evaluate Lagrange basis functions lk(x) which has the following interface,
i.e. begins as follows (or similar if you use a different language).

function l = lagrange(x, xj)

% LAGRANGE - evaluate all lagrange poly’s at x, ie l_k(x) for k=0...n

%

% Inputs: x is a single ordinate, and xj is a row vector of nodes x_0,...,x_n

% Outputs: l is a column vector containing the values l_0(x),...,l_n(x)

1



By using .\, prod, etc, you should only need to write explicitly one loop, the one over the basis
function index (but note the effort is still O(n2)). Now write a separate script which sets up n = 12
equally-spaced nodes xj with x0 = −1 and xn = 1, and calls your function to plot all Lagrange basis
functions over [−1, 1] on the same axes [Hint: if y is a rectangular array then plot(x, y, ’-’); plots
each row of y against the x-values in x]. Add the nodes as ’*’ symbols along your x-axis. BONUS:
How does supx∈[−1,1] |ln/2(x)| appear to be blowing up vs n ?

6. Graph the interpolation error En(x) := f(x) − (Lnf)(x) vs x for n = 25 for the functions,

(a) f(x) = sin(2ex), which is an entire (analytic) function.

(b) f(x) = (1 + 25x2)−1, which illustrates the Runge phenomenon.

Now for the first function make a plot of the sup norm of the interpolation error in [−1, 1] vs n, up to
n = 40. You should have exponential convergence up to some point. BONUS: explain the cause of the
new behavior for n > 25.

7. Tweak your codes in the previous two questions to instead use Chebychev nodes xj = − cos(πj/n),
for j = 0, . . . n, and describe the changes. In particular: what is supx∈[−1,1] |lk(x)| (roughly)? What
is the maximum error now in #6b? (Does the Runge phenomenon persist?) Is the best acheivable
interpolation error improved?


