Homework Assignment #5 Due Wednesday, March 3rd.

1. In this problem, X will be a *separable* Banach space. Let B^* be the closed unit ball in X^* . We want to work out a solution to E 2.5.3 in the text. Work out your own solution, or follow the guidelines below.

- (a) Show that a subset of separable metric space is separable so that we can find a countable dense subset $\{d_k\}_{k=1}^{\infty}$ of the unit sphere $S = \{x \in X : ||x|| = 1\}$ in X. (Hint: a separable metric space is second countable.)
- (b) For each k, show that $m_k(\varphi) := |\varphi(d_k)|$ is a seminorm on X^* such that $m_k(\varphi) \le 1$ on B^* .
- (c) Show that a net $\{\varphi_j\}$ in B^* converges to $\varphi \in B^*$ in the weak-* topology if and only if $m_k(\varphi_j \varphi) \to 0$ for all k.
- (d) For each $\varphi, \psi \in B^*$, define

$$\rho(\varphi,\psi) := \sum_{n=1}^{\infty} \frac{m_n(\varphi-\psi)}{2^n}.$$

Show that ρ is a metric on B^* .

- (e) Show that a net $\{\varphi_j\}$ in B^* converges to $\varphi \in B^*$ in the weak-* topology if and only if $\rho(\varphi_j, \varphi) \to 0$. Conclude that the topology induced by ρ on B^* is the weak-* topology; that is, conclude that the weak-* topology on B^* is metrizable.
- (f) Conclude that X^* is separable in the weak-* topology. (As Pedersen points out, a compact metric space is totally bounded and therefore separable.)
- 2. Work E 2.5.6, but use the hint from the "revised edition" of the text.

3. Suppose that H is an inner product space. Show that $|(x \mid y)| = ||x|| ||y||$ if and only if either $x = \alpha y$ or $y = \alpha x$ for some $\alpha \in \mathbf{F}$.

4. Suppose that W is a nontrivial subspace of a Hilbert space H. Define the orthogonal projection of H onto W to be the map $P: H \to H$ by P(h) = w, where w is the closest element in W to h. (Alternatively, P(h) = w where $h = w + w^{\perp}$ with $w \in W$ and $w^{\perp} \in W^{\perp}$.)

- (a) Show that P is a bounded linear map with ||P|| = 1.
- (b) Show that $P = P^2 = P^*$.
- (c) Conversely, if $Q: H \to H$ is a bounded linear map such that $Q = Q^* = Q^2$, then show that Q is the orthogonal projection onto its range: W = Q(H).

5. Work problem E 3.1.9 in the text. (Remark: problem 1 implies that H is separable in the weak topology. Here we also see that, despite this, an infinite-dimensional separable Hilbert space fails to be either second countable or even first countable in the weak topology.)

6. Let *H* be a separable Hilbert space with orthonormal basis $\{e_n\}_{n=1}^{\infty}$. Show that $e_n \to 0$ weakly. Find a sequence $\{y_m\}_{m=1}^{\infty}$ of convex combinations of the e_n such that $y_m \to 0$ in norm. (This illustrates the result you proved in problem #11 on the previous homework assignment.)

7. Let $T: H \to H$ be a linear map. Show that T is bounded if and only if T is continuous when H is given the weak topology. (In the latter case, Pedersen says that T is "weak– weak" continuous. Since T is bounded exactly when it is continuous, a bounded map could be considered to be a "norm–norm" continuous map.) In fact, show that if T is "norm–weak" continuous — that is continuous as a map from H with the norm topology to H with the weak topology — then T is bounded. (Hint: use the Closed Graph Theorem.)

8. Prove Lemma 88. Thus, if $x, y \in H$, then define $\theta_{x,y}$ to be the rank-one operator $\theta_{x,y}(z) = (z \mid y)x$. Also define $B_f(H) = \{ \theta_{x,y} : x, y \in H \}$. Then if $T \in B(H)$,

- (a) $T\theta_{x,y} = \theta_{Tx,y}$ and $\theta_{x,y}T = \theta_{x,T^*y}$,
- (b) $\|\theta_{x,y}\| = \|x\|\|y\|,$
- (c) $\theta_{x,y}^* = \theta_{y,x}$,
- (d) $T \in B_f(H)$ if and only if dim $T(H) < \infty$, and
- (e) $B_f(H)$ is a *-closed, two-sided ideal in B(H).