Homework Assignment \#5 Due Wednesday, March 3rd.

1. In this problem, X will be a separable Banach space. Let B^{*} be the closed unit ball in X^{*}. We want to work out a solution to E 2.5 .3 in the text. Work out your own solution, or follow the guidelines below.
(a) Show that a subset of separable metric space is separable so that we can find a countable dense subset $\left\{d_{k}\right\}_{k=1}^{\infty}$ of the unit sphere $S=\{x \in X:\|x\|=1\}$ in X. (Hint: a separable metric space is second countable.)

ANS: The hint gives it away. A separable metric space is always second countable: if $\left\{x_{n}\right\}$ is a countable dense set, then the collection of balls $\left\{B_{\frac{1}{m}}\left(x_{n}\right): n, m \geq 1\right\}$ form a countable basis. But any subset of a second countable space is clearly second countable in the relative topology. Now observe that any second countable space is separable: just take a point in each basic open set. Since we have assumed that H is separable, it follows that S is separable.
(b) For each k, show that $m_{k}(\varphi):=\left|\varphi\left(d_{k}\right)\right|$ is a seminorm on X^{*} such that $m_{k}(\varphi) \leq 1$ on B^{*}.

ANS: Note that m_{k} is just the seminorm associated to $\iota\left(d_{k}\right) \in X^{* *}$. It is bounded by 1 on B^{*} since d_{k} has norm 1.
(c) Show that a net $\left\{\varphi_{j}\right\}$ in B^{*} converges to $\varphi \in B^{*}$ in the weak-* topology if and only if $m_{k}\left(\varphi_{j}-\varphi\right) \rightarrow 0$ for all k.

ANS: Note that $m_{k}\left(\varphi_{j}-\varphi\right) \rightarrow 0$ exactly when $\varphi_{j}\left(d_{k}\right) \rightarrow \varphi\left(d_{k}\right)$. Thus, if $\varphi_{j} \rightarrow \varphi$ in the weak- $*$ topology, then $m_{k}\left(\varphi_{j}-\varphi\right) \rightarrow 0$ for all k.
Conversely, suppose that $m_{k}\left(\varphi_{j}-\varphi\right) \rightarrow 0$ for all k. This simply means that $\varphi_{j}\left(d_{k}\right) \rightarrow \varphi\left(d_{k}\right)$ for all k. Of course this means $\varphi_{j}\left(\alpha d_{k}\right) \rightarrow \varphi\left(\alpha d_{k}\right)$ for any $\alpha \in \mathbf{F}$. Let $x \in X$. If $x=0$, then $\varphi_{j}(x) \rightarrow \varphi(x)$ trivially. Otherwise, let $\alpha=\|x\|$. Then given $\epsilon>0$ there is a k such that $\left\|x-\alpha d_{k}\right\|<\epsilon / 3$. Then we can choose j_{0} such that $j \geq j_{0}$ implies that $\left|\varphi_{j}\left(\alpha d_{k}\right)-\varphi\left(\alpha d_{k}\right)\right|<\epsilon / 3$. Then since φ_{j} and φ have norm at most one, $j \geq j_{0}$ implies that

$$
\begin{aligned}
\left|\varphi_{j}(x)-\varphi(x)\right| & \leq\left|\varphi_{j}(x)-\varphi_{j}\left(\alpha d_{k}\right)\right|+\left|\varphi_{j}\left(\alpha d_{k}\right)-\varphi\left(\alpha d_{k}\right)\right|+\left|\varphi\left(\alpha d_{k}\right)-\varphi(x)\right| \\
& <\epsilon / 3+\epsilon / 3+\epsilon / 3=\epsilon .
\end{aligned}
$$

Since $x \in X$ was arbitrary, $\varphi_{j} \rightarrow \varphi$ in the weak-* topology.
(d) For each $\varphi, \psi \in B^{*}$, define

$$
\rho(\varphi, \psi):=\sum_{n=1}^{\infty} \frac{m_{n}(\varphi-\psi)}{2^{n}} .
$$

Show that ρ is a metric on B^{*}.
ANS: Note that $m_{n}(\varphi-\psi) \leq 2$, so the sum always converges to a nonnegative number. Therefore, to see that ρ is metric, it suffices to see that it is definite, symmetric and satisfies the triangle inequality.
If $\rho(\varphi, \psi)=0$, then φ and ψ agree on $\left\{d_{k}\right\}$, and therefore on $\left\{\alpha d_{k}: k \geq 1\right.$ and $\left.\alpha \in \mathbf{F}\right\}$. Since the latter set is dense in $X, \varphi=\psi$. Since $m_{k}(\varphi-\psi)=m_{k}(\psi-\varphi)$, we also have $\rho(\varphi, \psi)=\rho(\psi, \varphi)$. And if $\zeta \in B^{*}$, then we have $m_{k}(\varphi-\psi) \leq m_{k}(\varphi-\zeta)+m_{k}(\zeta-\psi)$ (since m_{k} is a seminorm). It now follows easily that $\rho(\varphi, \psi) \leq \rho(\varphi, \zeta)+\rho(\zeta, \psi)$.
(e) Show that a net $\left\{\varphi_{j}\right\}$ in B^{*} converges to $\varphi \in B^{*}$ in the weak-* topology if and only if $\rho\left(\varphi_{j}, \varphi\right) \rightarrow 0$. Conclude that the topology induced by ρ on B^{*} is the weak-* topology; that is, conclude that the weak-* topology on B^{*} is metrizable.

ANS: Suppose that $\rho\left(\varphi_{j}, \varphi\right) \rightarrow 0$. Then it is easy to see that $m_{k}\left(\varphi_{j}-\varphi\right) \rightarrow 0$ for each k. Then by part (c), $\varphi_{j} \rightarrow \varphi$ in the weak-* topology.
Conversely, suppose that $\varphi_{j} \rightarrow \varphi$ in the weak-* topology. Then by part (c) again, $m_{k}\left(\varphi_{j}-\varphi\right) \rightarrow 0$ for each k. Let $\epsilon>0$ be given. There is a N such that

$$
\begin{equation*}
\sum_{n=N-1}^{\infty} \frac{1}{2^{n}}<\frac{\epsilon}{2} . \tag{1}
\end{equation*}
$$

Then, since each $m_{k}(\varphi-\psi)$ is bounded by 2 ,

$$
\begin{equation*}
\sum_{n=N}^{\infty} \frac{m_{n}\left(\varphi_{j}-\varphi\right)}{2^{n}} \leq \sum_{n=N-1}^{\infty} \frac{1}{2^{n}}<\frac{\epsilon}{2} \quad \text { for all } j . \tag{2}
\end{equation*}
$$

Now we can find j_{0} such that $j \geq j_{0}$ implies that

$$
m_{n}\left(\varphi_{j}-\varphi\right)<\frac{\epsilon}{2} \quad \text { for all } n<N .
$$

Now $j \geq j_{0}$ implies that

$$
\begin{aligned}
\rho\left(\varphi_{j}, \varphi\right) & =\sum_{n=1}^{N-1} \frac{m_{n}\left(\varphi_{j}-\varphi\right)}{2^{n}}+\sum_{n=N}^{\infty} \frac{m_{n}\left(\varphi_{j}-\varphi\right)}{2^{n}} \\
& <\left(\sum_{n=1}^{N-1} \frac{\epsilon}{2^{n+1}}\right)+\frac{\epsilon}{2} \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
\end{aligned}
$$

Thus $\rho\left(\varphi_{j}, \varphi\right) \rightarrow 0$.
We have established that the topology induced by ρ is the weak-* topology. In other words, the restriction of the weak-* topology on the closed unit ball is metrizable.
(f) Conclude that X^{*} is separable in the weak-* topology. (As Pedersen points out, a compact metric space is totally bounded and therefore separable.)
ANS: Since a compact metric space is separable and since the closed unit ball B^{*} is compact and metrizable, it is separable. If $n \geq 1$, then $n B^{*}$ is just the closed n ball and $n B^{*}$ is homeomorphic to B^{*}. Hence $n B^{*}$ is separable. But $X^{*}=\bigcup n B^{*}$. Since the countable union of countable sets is countable, it follows that X^{*} is separable.
2. Work E 2.5.6, but use the hint from the "revised edition" of the text.
3. Suppose that H is an inner product space. Show that $|(x \mid y)|=\|x\|\|y\|$ if and only if either $x=\alpha y$ or $y=\alpha x$ for some $\alpha \in \mathbf{F}$.

ANS: If $y=\alpha x$, then $|(x \mid y)|=|\alpha|\|x\|=\|x\|\|\alpha x\|=\|x\|\|y\|$, and similarly when $x=\alpha y$.
Now assume that $|(x \mid y)|=\|x\|\|y\|$. If $x=0$, then $x=0 \cdot y$. So we can assume that $\|x\| \neq 0$.
Let $\tau \in \mathbf{C}$ by such that $\tau(x \mid y)=|(x \mid y)|$. Then, following the proof of the Cauchy-Schwarz inequality in our notes, for each $\lambda \in \mathbf{R}$,

$$
p(\lambda):=\|\lambda \tau x+y\|^{2}=\lambda^{2}\|x\|^{2}+2 \lambda|(x \mid y)|+\|y\|^{2}
$$

Since $\|x\| \neq 0, p$ is real quadratic polynomial. By assumption, p has zero discriminant. Hence p has a real root λ_{0}. Then if $\alpha_{0}:=\tau \lambda_{0}$, then $\|\alpha x+y\|=0$ and $y=-\alpha x$.
4. Suppose that W is a nontrivial subspace of a Hilbert space H. Define the orthogonal projection of H onto W to be the map $P: H \rightarrow H$ by $P(h)=w$, where w is the closest element in W to h. (Alternatively, $P(h)=w$ where $h=w+w^{\perp}$ with $w \in W$ and $w^{\perp} \in W^{\perp}$.)
(a) Show that P is a bounded linear map with $\|P\|=1$.
(b) Show that $P=P^{2}=P^{*}$.
(c) Conversely, if $Q: H \rightarrow H$ is a bounded linear map such that $Q=Q^{*}=Q^{2}$, then show that Q is the orthogonal projection onto its range: $W=Q(H)$.

ANS: Let $h, k \in H$. Then h can be written uniquely as $w+w^{\perp}$ with $w \in W$ and $w^{\perp} \in W^{\perp}$. Similarly, $k=u+u^{\perp}$. But then $\alpha h+k=(\alpha w+u)+\left(\alpha w^{\perp}+u^{\perp}\right)$ and $(\alpha w+u) \in W$ while $\left(\alpha w^{\perp}+u^{\perp}\right) \in W^{\perp}$. Thus $P(\alpha h+k) \alpha w+u=\alpha P(h)+P(k)$, and P is linear. Since $\|h\|^{2}=$ $\|w\|^{2}+\left\|w^{\perp}\right\|^{2}$, we must have $\|h\| \geq\|w\|$. That is, $\|P(h)\| \leq\|h\|$, and $\|P\| \leq 1$. Since $W \neq\{0\}$, there is a $w \in W$. Since $P(w)=w$, it follows that $\|P\| \geq 1$. Hence $\|P\|=1$. This proves part (a).

Since $P(h) \in W$, we clearly have $P^{2}(h):=P(P(h))=P(h)$, so $P=P^{2}$. On the other hand,

$$
(P h \mid k)=\left(P\left(w+w^{\perp}\right) \mid u+u^{\perp}\right)=\left(w \mid u+u^{\perp}\right)=(w \mid u)=\left(w+w^{\perp} \mid u\right)=(h \mid P(k)) .
$$

Therefore $P^{*}=P$. This proves part (b).
For part (c), first observe that W is closed. Suppose that $Q h_{j} \rightarrow h$. Then $Q^{2} h_{j} \rightarrow Q h$. Since $Q^{2} h_{j}=Q h_{j}$, and H is Hausdorff, $Q h=h$, and $h \in W$. Since W is closed, every $h \in H$ can be written uniquely as $w+w^{\perp}$ as above. Since $W=Q(H)$ and $Q^{2}=Q$, it follows that $Q(w)=w$ for all $w \in W$. Thus for all $k \in H$,

$$
(Q(h) \mid k)=\left(w+w^{\perp} \mid Q(k)\right)=(w \mid Q(k))=(Q(w) \mid k)=(w \mid k)
$$

Since k is arbitrary in H, we conclude that $Q(h)=w$ and therefore Q is the projection onto W.
5. Work problem E 3.1.9 in the text. (Remark: problem 1 implies that H is separable in the weak topology. Here we also see that, despite this, an infinite-dimensional separable Hilbert space fails to be either second countable or even first countable in the weak topology.)

ANS: Suppose that $\left\{e_{n}: n \in \mathbf{N}\right\}$ be a orthonormal basis for H. Let $T=\left\{n^{\frac{1}{2}} e_{n}\right\}$, and let C be the weak closure of T in H. The first order of business is to see that $0 \in C$. Suppose not. ${ }^{1}$ Then there is a weak neighborhood U of 0 disjoint from T. Therefore there is an $\epsilon>0$ and $x_{1}, \ldots, x_{k} \in H$ such that

$$
U=\left\{x \in H:\left|\left(x \mid x_{j}\right)\right|<\epsilon \text { for } j=1,2, \ldots, k\right\}
$$

Since $U \cap T=\emptyset$, for each $n \in \mathbf{N}$, we have

$$
\sum_{j=1}^{k}\left|\left(\left.n^{\frac{1}{2}} e_{n} \right\rvert\, x_{j}\right)\right|^{2} \geq \epsilon^{2}
$$

Alternatively,

$$
\begin{equation*}
\sum_{j=1}^{k}\left|\left(e_{n} \mid x_{j}\right)\right|^{2} \geq \frac{\epsilon^{2}}{n} \quad \text { for all } n \in \mathbf{N} \tag{3}
\end{equation*}
$$

On the other hand, by Parseval's Identity,

$$
\sum_{j=1}^{k}\left\|x_{j}\right\|^{2}=\sum_{j=1}^{k} \sum_{n=1}^{\infty}\left|\left(x_{j} \mid e_{n}\right)\right|^{2}
$$

[^0]which, the first sum is finite, is
$$
=\sum_{n=1}^{\infty} \sum_{j=1}^{k}\left|\left(e_{n} \mid x_{j}\right)\right|^{2} \geq \epsilon^{2} \sum_{n=1}^{\infty} \frac{1}{n}=\infty
$$
by (3). This is a contradiction. Therefore we conclude that $0 \in C$ as claimed.
If H were first countable in the weak topology, then we could find a sequence $\left\{y_{k}\right\}_{k=1}^{\infty} \subset T$ such that $y_{k} \rightarrow 0$ weakly. Let Φ_{y} be the linear functional on H corresponding to y :
$$
\Phi_{y}(x):=(x \mid y) .
$$

Recall that $\left\|\Phi_{y}\right\|=\|y\|$. Since convergent sequences ${ }^{2}$ are bounded, for each $x \in H$,

$$
\left\{\left|\Phi_{y_{k}}(x)\right|: k \in \mathbf{N}\right\}
$$

is bounded. Therefore by the Principle of Uniform Boundedness, there is a $M>0$ such that

$$
\left\|y_{k}\right\| \leq M \quad \text { for all } k \in \mathbf{N} .
$$

That is,

$$
\left\{y_{k}\right\}_{k=1}^{\infty} \subset\left\{n^{\frac{1}{2}} e_{n}: n \leq M^{2}\right\} .
$$

But then $\left\{y_{k}\right\}$ is never in the weak neighborhood of 0 given by

$$
\left\{y \in H:\left|\left(y \mid e_{n}\right)\right|<1 \text { for all } n=1,2, \ldots, M^{2}\right\} .
$$

Of course, this contradicts the assumption that $y_{k} \rightarrow 0$, so we can conclude that H is not (weakly) first countable and therefore H can't be metrizable in the weak topology.
6. Let H be a separable Hilbert space with orthonormal basis $\left\{e_{n}\right\}_{n=1}^{\infty}$. Show that $e_{n} \rightarrow 0$ weakly. Find a sequence $\left\{y_{m}\right\}_{m=1}^{\infty}$ of convex combinations of the e_{n} such that $y_{m} \rightarrow 0$ in norm. (This illustrates the result you proved in problem $\# 11$ on the previous homework assignment.)

ANS: Fix $x \in H$. Then $x=\sum_{n=1}^{\infty} \alpha_{n} e_{n}$, where $\alpha_{n}=\left(x \mid e_{n}\right)$. Since $\|x\|^{2}=\sum_{n=1}^{\infty} \|\left.\alpha_{n}\right|^{2}$, we must have $\lim _{n} \alpha_{n}=0$. But then

$$
\lim _{n}\left(e_{n} \mid x\right)=\lim _{n} \bar{\alpha}_{n}=0,
$$

and we have shown that $e_{n} \rightarrow 0$ in the weak topology.
Fix any $m_{0} \geq 1$. Let $y_{m}:=\frac{1}{m} \sum_{k=m_{0}+1}^{m_{0}+m} e_{k}$. Then $\left\|y_{m}\right\|^{2}=\frac{1}{m^{2}} m=\frac{1}{m}$. Therefore $y_{m} \rightarrow 0$ in norm and each y_{m} is a convex combination of $\left\{e_{n}\right\}_{n \geq m_{0}}$.

[^1]7. Let $T: H \rightarrow H$ be a linear map. Show that T is bounded if and only if T is continuous when H is given the weak topology. (In the latter case, Pedersen says that T is "weakweak" continuous. Since T is bounded exactly when it is continuous, a bounded map could be considered to be a "norm-norm" continuous map.) In fact, show that if T is "norm-weak" continuous - that is continuous as a map from H with the norm topology to H with the weak topology - then T is bounded. (Hint: use the Closed Graph Theorem.)

ANS: Suppose that T is bounded. If $x_{j} \rightarrow x$ weakly, then for any $y \in H$,

$$
\left(T x_{j} \mid y\right)=\left(x_{j} \mid T^{*} y\right) \rightarrow\left(x \mid T^{*} y\right)=(T x \mid y) .
$$

Therefore $T_{x_{j}} \rightarrow T x$ weakly and T must be weak-weak continuous.
Notice that since convergence in norm certainly implies weak convergence, a weak-weak continuous map is always norm-weak continuous. Hence it suffices to see that a norm-weak continuous operator is bounded. So assume that T is norm-weak continuous. We want to apply the Closed Graph Theorem, so suppose that $x_{n} \rightarrow x$ and that $T x_{n} \rightarrow y$ in norm. By assumption, $T x_{n} \rightarrow T x$ weakly. Since we also have $T x_{n} \rightarrow y$ weakly and since the weak topology is Hausdorff, we must have $y=T x$. Thus T is bounded (by the Closed Graph Theorem).
8. Prove Lemma 88. Thus, if $x, y \in H$, then define $\theta_{x, y}$ to be the rank-one operator $\theta_{x, y}(z)=$ $(z \mid y) x$. Also define $B_{f}(H)=\left\{\theta_{x, y}: x, y \in H\right\}$. Then if $T \in B(H)$,
(a) $T \theta_{x, y}=\theta_{T x, y}$ and $\theta_{x, y} T=\theta_{x, T^{*} y}$,
(b) $\left\|\theta_{x, y}\right\|=\|x\|\|y\|$,
(c) $\theta_{x, y}^{*}=\theta_{y, x}$,
(d) $T \in B_{f}(H)$ if and only if $\operatorname{dim} T(H)<\infty$, and
(e) $B_{f}(H)$ is a $*$-closed, two-sided ideal in $B(H)$.

[^0]: ${ }^{1} \mathrm{Ok}$, this is tricky. Did you come to office hours to ask about it? Why not?

[^1]: ${ }^{2}$ This is the whole point here. A convergent net need not be bounded.

