Homework Assignment #5 Due Wednesday, March 3rd.

1. In this problem, X will be a *separable* Banach space. Let B^* be the closed unit ball in X^* . We want to work out a solution to E 2.5.3 in the text. Work out your own solution, or follow the guidelines below.

(a) Show that a subset of separable metric space is separable so that we can find a countable dense subset $\{d_k\}_{k=1}^{\infty}$ of the unit sphere $S = \{x \in X : ||x|| = 1\}$ in X. (Hint: a separable metric space is second countable.)

ANS: The hint gives it away. A separable metric space is always second countable: if $\{x_n\}$ is a countable dense set, then the collection of balls $\{B_{\frac{1}{m}}(x_n): n, m \ge 1\}$ form a countable basis. But any subset of a second countable space is clearly second countable in the relative topology. Now observe that any second countable space is separable: just take a point in each basic open set. Since we have assumed that H is separable, it follows that S is separable.

(b) For each k, show that $m_k(\varphi) := |\varphi(d_k)|$ is a seminorm on X^* such that $m_k(\varphi) \le 1$ on B^* .

ANS: Note that m_k is just the seminorm associated to $\iota(d_k) \in X^{**}$. It is bounded by 1 on B^* since d_k has norm 1.

(c) Show that a net $\{\varphi_j\}$ in B^* converges to $\varphi \in B^*$ in the weak-* topology if and only if $m_k(\varphi_j - \varphi) \to 0$ for all k.

ANS: Note that $m_k(\varphi_j - \varphi) \to 0$ exactly when $\varphi_j(d_k) \to \varphi(d_k)$. Thus, if $\varphi_j \to \varphi$ in the weak-* topology, then $m_k(\varphi_j - \varphi) \to 0$ for all k.

Conversely, suppose that $m_k(\varphi_j - \varphi) \to 0$ for all k. This simply means that $\varphi_j(d_k) \to \varphi(d_k)$ for all k. Of course this means $\varphi_j(\alpha d_k) \to \varphi(\alpha d_k)$ for any $\alpha \in \mathbf{F}$. Let $x \in X$. If x = 0, then $\varphi_j(x) \to \varphi(x)$ trivially. Otherwise, let $\alpha = ||x||$. Then given $\epsilon > 0$ there is a k such that $||x - \alpha d_k|| < \epsilon/3$. Then we can choose j_0 such that $j \ge j_0$ implies that $|\varphi_j(\alpha d_k) - \varphi(\alpha d_k)| < \epsilon/3$. Then since φ_j and φ have norm at most one, $j \ge j_0$ implies that

$$\begin{aligned} |\varphi_j(x) - \varphi(x)| &\leq |\varphi_j(x) - \varphi_j(\alpha d_k)| + |\varphi_j(\alpha d_k) - \varphi(\alpha d_k)| + |\varphi(\alpha d_k) - \varphi(x)| \\ &< \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon. \end{aligned}$$

Since $x \in X$ was arbitrary, $\varphi_j \to \varphi$ in the weak-* topology.

(d) For each $\varphi, \psi \in B^*$, define

$$\rho(\varphi, \psi) := \sum_{n=1}^{\infty} \frac{m_n(\varphi - \psi)}{2^n}.$$

Show that ρ is a metric on B^* .

ANS: Note that $m_n(\varphi - \psi) \leq 2$, so the sum always converges to a nonnegative number. Therefore, to see that ρ is metric, it suffices to see that it is definite, symmetric and satisfies the triangle inequality. If $\rho(\varphi, \psi) = 0$, then φ and ψ agree on $\{d_k\}$, and therefore on $\{\alpha d_k : k \geq 1 \text{ and } \alpha \in \mathbf{F}\}$. Since the latter set is dense in $X, \varphi = \psi$. Since $m_k(\varphi - \psi) = m_k(\psi - \varphi)$, we also have $\rho(\varphi, \psi) = \rho(\psi, \varphi)$. And if $\zeta \in B^*$, then we have $m_k(\varphi - \psi) \leq m_k(\varphi - \zeta) + m_k(\zeta - \psi)$ (since m_k is a seminorm). It now follows easily that $\rho(\varphi, \psi) \leq \rho(\varphi, \zeta) + \rho(\zeta, \psi)$.

(e) Show that a net $\{\varphi_j\}$ in B^* converges to $\varphi \in B^*$ in the weak-* topology if and only if $\rho(\varphi_j, \varphi) \to 0$. Conclude that the topology induced by ρ on B^* is the weak-* topology; that is, conclude that the weak-* topology on B^* is metrizable.

ANS: Suppose that $\rho(\varphi_j, \varphi) \to 0$. Then it is easy to see that $m_k(\varphi_j - \varphi) \to 0$ for each k. Then by part (c), $\varphi_j \to \varphi$ in the weak-* topology.

Conversely, suppose that $\varphi_j \to \varphi$ in the weak-* topology. Then by part (c) again, $m_k(\varphi_j - \varphi) \to 0$ for each k. Let $\epsilon > 0$ be given. There is a N such that

$$\sum_{n=N-1}^{\infty} \frac{1}{2^n} < \frac{\epsilon}{2}.$$
(1)

Then, since each $m_k(\varphi - \psi)$ is bounded by 2,

$$\sum_{n=N}^{\infty} \frac{m_n(\varphi_j - \varphi)}{2^n} \le \sum_{n=N-1}^{\infty} \frac{1}{2^n} < \frac{\epsilon}{2} \quad \text{for all } j.$$
(2)

Now we can find j_0 such that $j \ge j_0$ implies that

$$m_n(\varphi_j - \varphi) < \frac{\epsilon}{2}$$
 for all $n < N$.

Now $j \ge j_0$ implies that

$$\rho(\varphi_j, \varphi) = \sum_{n=1}^{N-1} \frac{m_n(\varphi_j - \varphi)}{2^n} + \sum_{n=N}^{\infty} \frac{m_n(\varphi_j - \varphi)}{2^n}$$
$$< \left(\sum_{n=1}^{N-1} \frac{\epsilon}{2^{n+1}}\right) + \frac{\epsilon}{2}$$
$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Thus $\rho(\varphi_j, \varphi) \to 0$.

We have established that the topology induced by ρ is the weak-* topology. In other words, the restriction of the weak-* topology on the closed unit ball is metrizable.

(f) Conclude that X^* is separable in the weak-* topology. (As Pedersen points out, a compact metric space is totally bounded and therefore separable.)

ANS: Since a compact metric space is separable and since the closed unit ball B^* is compact and metrizable, it is separable. If $n \ge 1$, then nB^* is just the closed n ball and nB^* is homeomorphic to B^* . Hence nB^* is separable. But $X^* = \bigcup nB^*$. Since the countable union of countable sets is countable, it follows that X^* is separable.

2. Work E 2.5.6, but use the hint from the "revised edition" of the text.

3. Suppose that H is an inner product space. Show that $|(x \mid y)| = ||x|| ||y||$ if and only if either $x = \alpha y$ or $y = \alpha x$ for some $\alpha \in \mathbf{F}$.

ANS: If $y = \alpha x$, then $|(x \mid y)| = |\alpha| ||x|| = ||x|| ||\alpha x|| = ||x|| ||y||$, and similarly when $x = \alpha y$. Now assume that $|(x \mid y)| = ||x|| ||y||$. If x = 0, then $x = 0 \cdot y$. So we can assume that $||x|| \neq 0$. Let $\tau \in \mathbf{C}$ by such that $\tau(x \mid y) = |(x \mid y)|$. Then, following the proof of the Cauchy-Schwarz inequality in our notes, for each $\lambda \in \mathbf{R}$,

$$p(\lambda) := \|\lambda \tau x + y\|^2 = \lambda^2 \|x\|^2 + 2\lambda |(x \mid y)| + \|y\|^2.$$

Since $||x|| \neq 0$, p is real quadratic polynomial. By assumption, p has zero discriminant. Hence p has a real root λ_0 . Then if $\alpha_0 := \tau \lambda_0$, then $||\alpha x + y|| = 0$ and $y = -\alpha x$.

4. Suppose that W is a nontrivial subspace of a Hilbert space H. Define the orthogonal projection of H onto W to be the map $P: H \to H$ by P(h) = w, where w is the closest element in W to h. (Alternatively, P(h) = w where $h = w + w^{\perp}$ with $w \in W$ and $w^{\perp} \in W^{\perp}$.)

- (a) Show that P is a bounded linear map with ||P|| = 1.
- (b) Show that $P = P^2 = P^*$.
- (c) Conversely, if $Q: H \to H$ is a bounded linear map such that $Q = Q^* = Q^2$, then show that Q is the orthogonal projection onto its range: W = Q(H).

ANS: Let $h, k \in H$. Then h can be written uniquely as $w + w^{\perp}$ with $w \in W$ and $w^{\perp} \in W^{\perp}$. Similarly, $k = u + u^{\perp}$. But then $\alpha h + k = (\alpha w + u) + (\alpha w^{\perp} + u^{\perp})$ and $(\alpha w + u) \in W$ while $(\alpha w^{\perp} + u^{\perp}) \in W^{\perp}$. Thus $P(\alpha h + k)\alpha w + u = \alpha P(h) + P(k)$, and P is linear. Since $||h||^2 = ||w||^2 + ||w^{\perp}||^2$, we must have $||h|| \ge ||w||$. That is, $||P(h)|| \le ||h||$, and $||P|| \le 1$. Since $W \ne \{0\}$, there is a $w \in W$. Since P(w) = w, it follows that $||P|| \ge 1$. Hence ||P|| = 1. This proves part (a).

Since $P(h) \in W$, we clearly have $P^2(h) := P(P(h)) = P(h)$, so $P = P^2$. On the other hand,

$$(Ph \mid k) = (P(w + w^{\perp}) \mid u + u^{\perp}) = (w \mid u + u^{\perp}) = (w \mid u) = (w + w^{\perp} \mid u) = (h \mid P(k)).$$

Therefore $P^* = P$. This proves part (b).

For part (c), first observe that W is closed. Suppose that $Qh_j \to h$. Then $Q^2h_j \to Qh$. Since $Q^2h_j = Qh_j$, and H is Hausdorff, Qh = h, and $h \in W$. Since W is closed, every $h \in H$ can be written uniquely as $w + w^{\perp}$ as above. Since W = Q(H) and $Q^2 = Q$, it follows that Q(w) = w for all $w \in W$. Thus for all $k \in H$,

$$(Q(h) \mid k) = (w + w^{\perp} \mid Q(k)) = (w \mid Q(k)) = (Q(w) \mid k) = (w \mid k).$$

Since k is arbitrary in H, we conclude that Q(h) = w and therefore Q is the projection onto W.

5. Work problem E 3.1.9 in the text. (Remark: problem 1 implies that H is separable in the weak topology. Here we also see that, despite this, an infinite-dimensional separable Hilbert space fails to be either second countable or even first countable in the weak topology.)

ANS: Suppose that $\{e_n : n \in \mathbb{N}\}$ be a orthonormal basis for H. Let $T = \{n^{\frac{1}{2}}e_n\}$, and let C be the weak closure of T in H. The first order of business is to see that $0 \in C$. Suppose not.¹ Then there is a weak neighborhood U of 0 disjoint from T. Therefore there is an $\epsilon > 0$ and $x_1, \ldots, x_k \in H$ such that

$$U = \{ x \in H : |(x \mid x_j)| < \epsilon \text{ for } j = 1, 2, \dots, k \}.$$

Since $U \cap T = \emptyset$, for each $n \in \mathbf{N}$, we have

$$\sum_{j=1}^{k} |(n^{\frac{1}{2}}e_n \mid x_j)|^2 \ge \epsilon^2.$$

Alternatively,

$$\sum_{j=1}^{k} |(e_n \mid x_j)|^2 \ge \frac{\epsilon^2}{n} \quad \text{for all } n \in \mathbf{N}.$$
(3)

On the other hand, by Parseval's Identity,

$$\sum_{j=1}^{k} \|x_j\|^2 = \sum_{j=1}^{k} \sum_{n=1}^{\infty} |(x_j \mid e_n)|^2$$

¹Ok, this is tricky. Did you come to office hours to ask about it? Why not?

which, the first sum is finite, is

$$= \sum_{n=1}^{\infty} \sum_{j=1}^{k} |(e_n | x_j)|^2 \ge \epsilon^2 \sum_{n=1}^{\infty} \frac{1}{n} = \infty$$

by (3). This is a contradiction. Therefore we conclude that $0 \in C$ as claimed.

If H were first countable in the weak topology, then we could find a sequence $\{y_k\}_{k=1}^{\infty} \subset T$ such that $y_k \to 0$ weakly. Let Φ_y be the linear functional on H corresponding to y:

$$\Phi_y(x) := (x \mid y)$$

Recall that $\|\Phi_y\| = \|y\|$. Since convergent sequences² are bounded, for each $x \in H$,

$$\{ |\Phi_{y_k}(x)| : k \in \mathbf{N} \}$$

is bounded. Therefore by the Principle of Uniform Boundedness, there is a M > 0 such that

$$||y_k|| \leq M$$
 for all $k \in \mathbf{N}$.

That is,

$$\{y_k\}_{k=1}^{\infty} \subset \{n^{\frac{1}{2}}e_n : n \leq M^2\}$$

But then $\{y_k\}$ is never in the weak neighborhood of 0 given by

$$\{ y \in H : |(y | e_n)| < 1 \text{ for all } n = 1, 2, \dots, M^2 \}.$$

Of course, this contradicts the assumption that $y_k \to 0$, so we can conclude that H is not (weakly) first countable and therefore H can't be metrizable in the weak topology.

6. Let H be a separable Hilbert space with orthonormal basis $\{e_n\}_{n=1}^{\infty}$. Show that $e_n \to 0$ weakly. Find a sequence $\{y_m\}_{m=1}^{\infty}$ of convex combinations of the e_n such that $y_m \to 0$ in norm. (This illustrates the result you proved in problem #11 on the previous homework assignment.)

ANS: Fix $x \in H$. Then $x = \sum_{n=1}^{\infty} \alpha_n e_n$, where $\alpha_n = (x \mid e_n)$. Since $||x||^2 = \sum_{n=1}^{\infty} ||\alpha_n|^2$, we must have $\lim_{n \to \infty} \alpha_n = 0$. But then

$$\lim_{n} (e_n \mid x) = \lim_{n} \bar{\alpha}_n = 0,$$

and we have shown that $e_n \to 0$ in the weak topology. Fix any $m_0 \ge 1$. Let $y_m := \frac{1}{m} \sum_{k=m_0+1}^{m_0+m} e_k$. Then $\|y_m\|^2 = \frac{1}{m^2}m = \frac{1}{m}$. Therefore $y_m \to 0$ in norm and each y_m is a convex combination of $\{e_n\}_{n \ge m_0}$.

²This is the whole point here. A convergent net need not be bounded.

7. Let $T: H \to H$ be a linear map. Show that T is bounded if and only if T is continuous when H is given the weak topology. (In the latter case, Pedersen says that T is "weak– weak" continuous. Since T is bounded exactly when it is continuous, a bounded map could be considered to be a "norm–norm" continuous map.) In fact, show that if T is "norm–weak" continuous — that is continuous as a map from H with the norm topology to H with the weak topology — then T is bounded. (Hint: use the Closed Graph Theorem.)

ANS: Suppose that T is bounded. If $x_j \to x$ weakly, then for any $y \in H$,

$$(Tx_j \mid y) = (x_j \mid T^*y) \to (x \mid T^*y) = (Tx \mid y).$$

Therefore $T_{x_i} \to Tx$ weakly and T must be weak-weak continuous.

Notice that since convergence in norm certainly implies weak convergence, a weak-weak continuous map is always norm-weak continuous. Hence it suffices to see that a norm-weak continuous operator is bounded. So assume that T is norm-weak continuous. We want to apply the Closed Graph Theorem, so suppose that $x_n \to x$ and that $Tx_n \to y$ in norm. By assumption, $Tx_n \to Tx$ weakly. Since we also have $Tx_n \to y$ weakly and since the weak topology is Hausdorff, we must have y = Tx. Thus T is bounded (by the Closed Graph Theorem).

8. Prove Lemma 88. Thus, if $x, y \in H$, then define $\theta_{x,y}$ to be the rank-one operator $\theta_{x,y}(z) = (z \mid y)x$. Also define $B_f(H) = \{\theta_{x,y} : x, y \in H\}$. Then if $T \in B(H)$,

(a)
$$T\theta_{x,y} = \theta_{Tx,y}$$
 and $\theta_{x,y}T = \theta_{x,T^*y}$,

(b)
$$\|\theta_{x,y}\| = \|x\|\|y\|,$$

(c)
$$\theta_{x,y}^* = \theta_{y,x}$$
,

- (d) $T \in B_f(H)$ if and only if dim $T(H) < \infty$, and
- (e) $B_f(H)$ is a *-closed, two-sided ideal in B(H).