Homework Assignment #3 Due Wednesday, February 3rd

INSTRUCTIONS: As usual, for the "true/false" questions, just circle the correct answer. No justifications are required, but don't guess. You score is based on #right minus #wrong.

- 1. **TRUE or FALSE**: The dual of any normed vector space is a Banach space.
- 2. **TRUE or FALSE**: If X and Y are Banach spaces and $T: X \to Y$ is a surjective linear map, then T is bounded.

ANS: FALSE: But constructing a counter example is tedious. Let X be any infinite dimensional Banach space. Then X has a basis $\{x_a\}_{a\in A}$ as a vector space over \mathbf{F} . (It is a consequence of the Baire Category Theorem that A must be uncountable! You might want to prove that for yourself.) Let $\{a_n\}_{n=1}^{\infty}$ be any countable subset of A. We can define a linear functional $\varphi: X \to \mathbf{F}$ simply by arbitrarily specifying what φ does to each x_a . In particular, I can define

$$\Phi(x_a) = \begin{cases} n \|x_{a_n}\| & \text{if } a = a_n, \text{ and} \\ 0 & \text{otherwise.} \end{cases}$$

Let $y_n = (n||x_{a_n}||)^{-1}x_{a_n}$. Then $y_n \to 0$ in X. But $\varphi(y_n) = 1$ for all n. Therefore, $\varphi(y_n) \neq 0$. Therefore φ is not continuous at 0, and therefore not bounded.

- 3. **TRUE or FALSE**: If Y is a closed subspace of a normed vector space X and if $x \in X \setminus Y$, then there is a $\varphi \in X^*$ such that $\varphi(y) = 0$ for all $y \in Y$ and $\varphi(x) = 1$.
- 4. **TRUE or FALSE**: Suppose that X and Y are Banach spaces and that $T_n: X \to Y$ is a bounded linear map for $n = 1, 2, 3, \ldots$ Suppose that there is a linear operator $T_0: X \to Y$ such that for each $x \in X$, we have $T_n x \to T_0 x$. Then T_0 is bounded.

ANS: Since $\{T_n\}_{n=1}^{\infty}$ is pointwise bounded, by the Principle of Uniform Boundedness, there is a M such that $||T_n|| \leq M$ for all $n \geq 1$. Now it follows easily that $||T_0|| \leq M$.

5. Suppose that Y is a subspace of a normed vector space X. Show that the closure of Y is given by

$$\overline{Y} = \bigcap \{ \ker \varphi : \varphi \in X^* \text{ and } Y \subset \ker \varphi \}.$$

6. Work E.2.3.2 in the text. If may be helpful to think of c_0 as $C_0(\mathbf{N})$. Then if $x \in C_c(\mathbf{N})$, we have $x = \sum x_n \delta_n$, where the x_n are scalars and δ_n is the function taking the value 1 at n and 0 elsewhere.

ANS: This shouldn't be so hard. Recall that \mathfrak{c} and \mathfrak{c}_0 are subspaces of ℓ^{∞} . It is easy to see that $\mathfrak{c}_{00} := C_c(\mathbf{N})$ can be viewed as a dense subspace of either \mathfrak{c}_0 or ℓ^1 .

Furthermore, if $x \in \ell^{\infty}$ and $y \in \ell^{1}$, then

$$\sum_{n=1}^{\infty} |x_n y_n| \le ||x||_{\infty} \sum_{n=1}^{\infty} |y_n| = ||x||_{\infty} ||y||_1.$$
 (1)

Therefore, if $y \in \ell^1$, then we can define $\varphi_y : \mathfrak{c}_0 \to \mathbf{F}$ by

$$\varphi_y(x) = \sum_{n=1}^{\infty} x_n y_n,$$

and $\|\varphi_y\| \leq \|y\|_1$. Of course, given $\epsilon > 0$, there is a N such that

$$\sum_{n=1}^{N} |y_n| \ge ||y||_1 - \epsilon.$$

For $z \in \mathbf{F}$, let $\operatorname{sgn}(z)$ equal z/|z| if $z \neq 0$, and 0 otherwise. (Thus $\overline{\operatorname{sgn}(z)}z = |z|$ for all z.) Define $x \in \mathfrak{c}_0$ by

$$x_n = \begin{cases} \overline{\operatorname{sgn}(y_n)} & \text{if } n \leq N, \text{ and} \\ 0 & \text{otherwise.} \end{cases}$$

Then x has norm at most one, and

$$\varphi_y(x) = \sum_{n=1}^N |y_n| \ge ||y||_1 - \epsilon.$$

Therefore $\|\varphi_y\| = \|y\|_1$, and $y \mapsto \varphi_y$ is an isometry of ℓ^1 into \mathfrak{c}_0^* . (It is obviously linear and one-to-one since it is isometric.) We just have to see that it is surjective.

Suppose that $\varphi \in \mathfrak{c}_0^*$. Define $y_n := \varphi(\delta_n)$. For any N, define

$$x_n^N = \begin{cases} \overline{\operatorname{sgn}(y_n)} & \text{if } n \leq N, \text{ and} \\ 0 & \text{otherwise.} \end{cases}$$

Then $x^N = \sum_{n=1}^N \overline{\operatorname{sgn}(y_n)} \delta_n$, $||x^N||_{\infty} \le 1$ and $x^N \in \mathfrak{c}_{00} \subset \mathfrak{c}_0$. Since

$$\varphi(x^N) = \sum_{n=1}^N |y_n| \le ||\varphi||,$$

 $y = (y_n)$ is in ℓ^1 . Since $\varphi = \varphi_y$ on \mathfrak{c}_{00} , and since \mathfrak{c}_{00} is dense in \mathfrak{c}_0 , we must have $\varphi = \varphi_y$ as desired. This proves that \mathfrak{c}_0^* is (isometrically isomorphic to) ℓ^1 .

Now start with $x \in \ell^{\infty}$. Then (1) implies that we get a functional $\psi_x : \ell^1 \to \mathbf{F}$ defined by

$$\psi_x(y) = \sum_{n=1}^{\infty} x_n y_n,$$

and that $\|\psi_x\| \leq \|x\|_{\infty}$. If $x \in \ell^{\infty}$ and if $\epsilon > 0$, then there is a k such that $|x_k| \geq \|x\|_{\infty} - \epsilon$. Since $\|\delta_k\|_1 = 1$ and since $|\psi_x(\delta_k)| \leq \|x\|_{\infty} - \epsilon$, we see that $x \mapsto \psi_x$ is an isometry of ℓ^{∞} into ℓ^{1*} . To see that this map is surjective, we proceed as above. Given $\psi \in \ell^{1*}$, let $x_n := \psi(\delta_n)$. Since $|x_n| \leq \|\psi\|$, $x = (x_n) \in \ell^{\infty}$. Since $\psi = \psi_x$ on \mathfrak{c}_{00} and since \mathfrak{c}_{00} is dense in ℓ^1 , we've shown that $\psi = \psi_x$ and that ℓ^{1*} is (isometrically isomorphic to) ℓ^{∞} .

Now let's look at \mathfrak{c}^* . Define $\lambda : \mathfrak{c} \to \mathbf{F}$ by $\lambda(x) = \lim_n x_n$. Then $\lambda \in \mathfrak{c}^*$ and $\|\lambda\| = 1$. Now suppose that $\varphi \in \mathfrak{c}^*$. Then the restriction of φ to $\mathfrak{c}_0 \subset \mathfrak{c}$ is, by the first part of this problem, given by φ_y for some $y \in \ell^1$. On the other hand, if $x \in \mathfrak{c}$, then $x - \lambda(x) \cdot 1 \in \mathfrak{c}_0$, where 1 denotes the constant sequence. If $L := \varphi(1)$, then

$$\varphi(x) = \varphi_y(x) + \lambda(x)(L - \sum y_n).$$

Thus every $\varphi \in \mathfrak{c}^*$ is of the form

$$\varphi(x) = \varphi_y(x) + z\lambda(x)$$

for some $y \in \ell^1$ and $z \in \mathbf{F}$. Furthermore, a straightforward computation shows that $\|\varphi\| = \|y\|_1 + |z|$. Thus we get an isometric isomorphism of $\mathbf{C} \oplus \ell^1$ onto \mathfrak{c}^* where the norm of the latter is given by $\|(z,y)\| := |z| + \|y\|_1$. However it is easy to see that $\mathbf{C} \oplus \ell^1$ is isometrically isomorphic to ℓ^1 : just send $(z,(y_n))$ to (z,y_1,y_2,\ldots) .

Finally, \mathfrak{c}_0 , and therefore \mathfrak{c} , can't be reflexive since \mathfrak{c}_0 is separable and $\mathfrak{c}_0^{**} \cong \ell^{1*} \cong \ell^{\infty}$ is not.

7. Work E.2.3.4 in the text.

ANS: Let $\{\varphi_n\}$ be dense in X^* , and choose $x_n \in X$ such that $||x_n|| = 1$ and such that $||\varphi_n(x_n)| \ge \frac{1}{2}||\varphi_n||$. Let Y be the closed linear span of the x_n . Then Y is separable (since the rational span of the x_n is dense in Y). If X = Y, then we're done. Otherwise, our Corollary 2.3.5 implies that there is $\varphi \in X^*$ such that $||\varphi|| = 1$ and such that $||\varphi|| = 0$ for all $||\varphi|| = 1$. In particular, $||\varphi_n|| \ge \frac{1}{2}$. But then

$$\begin{aligned} |\varphi(x_n)| &= |\varphi_n(x_n) - (\varphi_n(x_n) - \varphi(x_n))| \\ &\geq |\varphi_n(x_n)| - |(\varphi - \varphi_n)(x_n)| \\ &\geq \frac{1}{4} - \frac{1}{8} > 0. \end{aligned}$$

This contradicts the fact that $|\varphi(x_n)| = 0$. Therefore Y = X and we're done.

¹Since counting measure on **N** is σ -finite, we could have appealed to the fact that $L^1(X, \mathcal{M}, \mu)^*$ is $L^{\infty}(X, \mathcal{M}, \mu)$ whenever the measure space is σ -finite, but that would be overkill.

8. Work E.2.3.5 in the text.

ANS: First some comments. For any Banach space X, $\iota: X \to X^{**}$ is an isometric injection. We say that X is reflexive if ι is surjective. Technically, that is not the same as showing that X and X^{**} are isomorphic. Thus saying that since X reflexive implies that X and X^{**} are isomorphic, we have X^* and X^{***} isomorphic is not quite enough to show that X^* is reflexive.

Anyway, to the problem: Assume first that X is reflexive. To show that X^* is reflexive, we need to show that the canonical injection $\iota_{X^*}: X^* \to X^{***}$ is surjective. To this end, suppose that $\Phi \in X^{***}$. Since the composition of bounded maps is bounded, we can define $\varphi \in X^*$ by

$$\varphi(x) := \Phi(\iota(x)).$$

Thus we'll be done once we prove that $\iota_{X^*}(\varphi) = \Phi$. However, since $\iota(x)$ is a typical element of X^{**} , we can compute that

$$\iota_{X^*}(\varphi)(\iota(x)) = \iota(x)(\varphi)$$

$$= \varphi(x)$$

$$= \Phi(\iota(x)).$$

This proves that $\iota_{X^*}(\varphi) = \Phi$, and finishes the first half of the problem.

Now suppose that X^* is reflexive so that, in the notation above, $\iota_{X^*}: X^* \to X^{***}$ is surjective. If X were not reflexive, then since i(X) is an isometric image of X, it is complete and therefore it is a closed proper subspace of X^{**} . Therefore, by Corollary 2.3.5, there is a $\Phi \in X^{***}$ such that $\|\Phi\| = 1$ and such that $\Phi(\iota(X)) = \{0\}$. By assumption, we have $\Phi = \iota_{X^*}(\varphi)$ for some $\varphi \in X^*$. But then for all $x \in X$ we have

$$0 = \Phi(\iota(x))$$

$$= \iota_{X^*}(\varphi)(\iota(x))$$

$$= \iota(x)(\varphi)$$

$$= \varphi(x).$$

But this is absurd, since this implies $\varphi = 0$ in which case $\Phi = \iota_{X^*}(\varphi)$ is zero. Thus we must have $\iota(X)$ equal to all of X^{**} and X is reflexive.

9. Work E.2.3.7 in the text.

ANS: One of the challenges here is to write your thoughts down coherently and to properly justify the manipulations with sums.

If $x \in \ell^1$, then for all $\epsilon > 0$, there is a N such that $n \geq N$ implies

$$\left|\sum_{m=n}^{\infty} x_m\right| \le \sum_{m=n}^{\infty} |x_m| < \epsilon.$$

Therefore

$$(Tx)_n := \sum_{m=n}^{\infty} x_m$$

defines an element Tx in \mathfrak{c}_0 . Clearly, $T:\ell^1\to\mathfrak{c}_0$ is linear. Since

$$|(Tx)_n| \le \sum_{m=n}^{\infty} |x_m| \le ||x||_1,$$

we certainly have $||Tx||_{\infty} \leq ||x||_1$ and $T \in B(\ell^1, \mathfrak{c}_0)$. Now we identify ℓ^1 with \mathfrak{c}_0^* and ℓ^∞ with ℓ^{1^*} via the maps $y \mapsto \varphi_y$ and $x \mapsto \psi_x$ defined in a previous problem. Now if $x, y \in \ell^1$, we have — using Fubini's Theorem to justify the manipulations with sums —

$$(T^*\varphi_x)(y) = \varphi_x(Ty)$$

$$= \sum_{n=1}^{\infty} x_n(Ty)_n$$

$$= \sum_{n=1}^{\infty} \sum_{m=n}^{\infty} x_n y_m$$

$$= \sum_{\{(n,m)\in\mathbf{N}\times\mathbf{N}: m\geq n\}} x_n y_m$$

$$= \sum_{m=1}^{\infty} \sum_{n=1}^{m} x_n y_m$$

$$= \sum_{m=1}^{\infty} y_m (\sum_{n=1}^{m} x_n)$$

$$= \psi_z(y),$$

where $z \in \ell^{\infty}$ is given by $z_m := \sum_{n=1}^m x_n$. Therefore as a map from $\ell^1 \to \ell^{\infty}$, we have $T^*x = z$.