
Homework Assignment #3

Due Wednesday, February 3rd

Instructions: As usual, for the “true/false” questions, just circle the correct answer. No
justifications are required, but don’t guess. You score is based on #right minus #wrong.

1. TRUE or FALSE: The dual of any normed vector space is a Banach space.

2. TRUE or FALSE: If X and Y are Banach spaces and T : X → Y is a surjective linear
map, then T is bounded.

ANS: FALSE: But constructing a counter example is tedious. Let X be any infinite dimensional
Banach space. Then X has a basis {xa}a∈A as a vector space over F. (It is a consequence of the
Baire Category Theorem that A must be uncountable! You might want to prove that for yourself.)
Let {an}

∞
n=1 be any countable subset of A. We can define a linear functional ϕ : X → F simply by

arbitrarily specifying what ϕ does to each xa. In particular, I can define

Φ(xa) =

{

n‖xan
‖ if a = an, and

0 otherwise.

Let yn = (n‖xan
‖)−1xan

. Then yn → 0 in X. But ϕ(yn) = 1 for all n. Therefore, ϕ(yn) 6→ 0.
Therefore ϕ is not continuous at 0, and therefore not bounded.

3. TRUE or FALSE: If Y is a closed subspace of a normed vector space X and if x ∈ X\Y ,
then there is a ϕ ∈ X∗ such that ϕ(y) = 0 for all y ∈ Y and ϕ(x) = 1.

4. TRUE or FALSE: Suppose that X and Y are Banach spaces and that Tn : X → Y is a
bounded linear map for n = 1, 2, 3, . . . . Suppose that there is a linear operator T0 : X → Y

such that for each x ∈ X, we have Tnx → T0x. Then T0 is bounded.

ANS: Since {Tn }∞n=1 is pointwise bounded, by the Principle of Uniform Boundedness, there is a
M such that ‖Tn‖ ≤M for all n ≥ 1. Now it follows easily that ‖T0‖ ≤M .

5. Suppose that Y is a subspace of a normed vector space X. Show that the closure of Y is
given by

Y =
⋂

{ ker ϕ : ϕ ∈ X∗ and Y ⊂ ker ϕ }.
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6. Work E.2.3.2 in the text. If may be helpful to think of c0 as C0(N). Then if x ∈ Cc(N),
we have x =

∑

xnδn, where the xn are scalars and δn is the function taking the value 1 at n

and 0 elsewhere.

ANS: This shouldn’t be so hard. Recall that c and c0 are subspaces of ℓ∞. It is easy to see that
c00 := Cc(N) can be viewed as a dense subspace of either c0 or ℓ1.

Furthermore, if x ∈ ℓ∞ and y ∈ ℓ1, then

∞
∑

n=1

|xnyn| ≤ ‖x‖∞

∞
∑

n=1

|yn| = ‖x‖∞‖y‖1. (1)

Therefore, if y ∈ ℓ1, then we can define ϕy : c0 → F by

ϕy(x) =
∞
∑

n=1

xnyn,

and ‖ϕy‖ ≤ ‖y‖1. Of course, given ǫ > 0, there is a N such that

N
∑

n=1

|yn| ≥ ‖y‖1 − ǫ.

For z ∈ F, let sgn(z) equal z/|z| if z 6= 0, and 0 otherwise. (Thus sgn(z)z = |z| for all z.) Define
x ∈ c0 by

xn =

{

sgn(yn) if n ≤ N , and

0 otherwise.

Then x has norm at most one, and

ϕy(x) =

N
∑

n=1

|yn| ≥ ‖y‖1 − ǫ.

Therefore ‖ϕy‖ = ‖y‖1, and y 7→ ϕy is an isometry of ℓ1 into c
∗
0. (It is obviously linear and one-to-one

since it is isometric.) We just have to see that it is surjective.
Suppose that ϕ ∈ c

∗
0. Define yn := ϕ(δn). For any N , define

xN
n =

{

sgn(yn) if n ≤ N , and

0 otherwise.

Then xN =
∑N

n=1 sgn(yn)δn, ‖xN‖∞ ≤ 1 and xN ∈ c00 ⊂ c0. Since

ϕ(xN ) =

N
∑

n=1

|yn| ≤ ‖ϕ‖,

y = (yn) is in ℓ1. Since ϕ = ϕy on c00, and since c00 is dense in c0, we must have ϕ = ϕy as desired.
This proves that c

∗
0 is (isometrically isomorphic to) ℓ1.
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Now start with x ∈ ℓ∞. Then (1) implies that we get a functional ψx : ℓ1 → F defined by

ψx(y) =
∞
∑

n=1

xnyn,

and that ‖ψx‖ ≤ ‖x‖∞. If x ∈ ℓ∞ and if ǫ > 0, then there is a k such that |xk| ≥ ‖x‖∞ − ǫ. Since
‖δk‖1 = 1 and since |ψx(δk)| ≤ ‖x‖∞ − ǫ, we see that x 7→ ψx is an isometry of ℓ∞ into ℓ1

∗
. To see

that this map is surjective, we proceed as above.1 Given ψ ∈ ℓ1
∗
, let xn := ψ(δn). Since |xn| ≤ ‖ψ‖,

x = (xn) ∈ ℓ∞. Since ψ = ψx on c00 and since c00 is dense in ℓ1, we’ve shown that ψ = ψx and that
ℓ1

∗
is (isometrically isomorphic to) ℓ∞.
Now let’s look at c

∗. Define λ : c → F by λ(x) = limn xn. Then λ ∈ c
∗ and ‖λ‖ = 1. Now

suppose that ϕ ∈ c
∗. Then the restriction of ϕ to c0 ⊂ c is, by the first part of this problem, given

by ϕy for some y ∈ ℓ1. On the other hand, if x ∈ c, then x − λ(x) · 1 ∈ c0, where 1 denotes the
constant sequence. If L := ϕ(1), then

ϕ(x) = ϕy(x) + λ(x)(L−
∑

yn).

Thus every ϕ ∈ c
∗ is of the form

ϕ(x) = ϕy(x) + zλ(x)

for some y ∈ ℓ1 and z ∈ F. Furthermore, a straightforward computation shows that ‖ϕ‖ = ‖y‖1+|z|.
Thus we get an isometric isomorphism of C ⊕ ℓ1 onto c

∗ where the norm of the latter is given by
‖(z, y)‖ := |z| + ‖y‖1. However it is easy to see that C ⊕ ℓ1 is isometrically isomorphic to ℓ1: just
send (z, (yn)) to (z, y1, y2, . . . ).

Finally, c0, and therefore c, can’t be reflexive since c0 is separable and c
∗∗
0

∼= ℓ1
∗ ∼= ℓ∞ is not.

7. Work E.2.3.4 in the text.

ANS: Let {ϕn } be dense in X∗, and choose xn ∈ X such that ‖xn‖ = 1 and such that |ϕn(xn)| ≥
1
2‖ϕn‖. Let Y be the closed linear span of the xn. Then Y is separable (since the rational span of
the xn is dense in Y ). If X = Y , then we’re done. Otherwise, our Corollary 2.3.5 implies that there
is ϕ ∈ X∗ such that ‖ϕ‖ = 1 and such that ϕ(y) = 0 for all y ∈ Y . In particular, ϕ(xn) = 0 for all
n. But there is a n such that ‖ϕ− ϕn‖ <

1
8 . In particular, ‖ϕn‖ ≥ 1

2 . But then

|ϕ(xn)| = |ϕn(xn) − (ϕn(xn) − ϕ(xn)|

≥ |ϕn(xn)| − |(ϕ− ϕn)(xn)|

≥
1

4
−

1

8
> 0.

This contradicts the fact that |ϕ(xn)| = 0. Therefore Y = X and we’re done.

1Since counting measure on N is σ-finite, we could have appealed to the fact that L1(X,M, µ)∗ is
L∞(X,M, µ) whenever the measure space is σ-finite, but that would be overkill.
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8. Work E.2.3.5 in the text.

ANS: First some comments. For any Banach space X, ι : X → X∗∗ is an isometric injection. We
say that X is reflexive if ι is surjective. Technically, that is not the same as showing that X and
X∗∗ are isomorphic. Thus saying that since X reflexive implies that X and X∗∗ are isomorphic, we
have X∗ and X∗∗∗ isomorphic is not quite enough to show that X∗ is reflexive.

Anyway, to the problem: Assume first that X is reflexive. To show that X∗ is reflexive, we
need to show that the canonical injection ιX∗ : X∗ → X∗∗∗ is surjective. To this end, suppose that
Φ ∈ X∗∗∗. Since the composition of bounded maps is bounded, we can define ϕ ∈ X∗ by

ϕ(x) := Φ
(

ι(x)
)

.

Thus we’ll be done once we prove that ιX∗(ϕ) = Φ. However, since ι(x) is a typical element of X∗∗,
we can compute that

ιX∗(ϕ)
(

ι(x)
)

= ι(x)(ϕ)

= ϕ(x)

= Φ
(

ι(x)
)

.

This proves that ιX∗(ϕ) = Φ, and finishes the first half of the problem.
Now suppose that X∗ is reflexive so that, in the notation above, ιX∗ : X∗ → X∗∗∗ is surjective.

If X were not reflexive, then since i(X) is an isometric image of X, it is complete and therefore it
is a closed proper subspace of X∗∗. Therefore, by Corollary 2.3.5, there is a Φ ∈ X∗∗∗ such that
‖Φ‖ = 1 and such that Φ

(

ι(X)
)

= { 0 }. By assumption, we have Φ = ιX∗(ϕ) for some ϕ ∈ X∗. But
then for all x ∈ X we have

0 = Φ
(

ι(x)
)

= ιX∗(ϕ)
(

ι(x)
)

= ι(x)(ϕ)

= ϕ(x).

But this is absurd, since this implies ϕ = 0 in which case Φ = ιX∗(ϕ) is zero. Thus we must have
ι(X) equal to all of X∗∗ and X is reflexive.

9. Work E.2.3.7 in the text.

ANS: One of the challenges here is to write your thoughts down coherently and to properly justify
the manipulations with sums.

If x ∈ ℓ1, then for all ǫ > 0, there is a N such that n ≥ N implies

∣

∣

∣

∞
∑

m=n

xm

∣

∣

∣
≤

∞
∑

m=n

|xm| < ǫ.

Therefore

(Tx)n :=

∞
∑

m=n

xm
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defines an element Tx in c0. Clearly, T : ℓ1 → c0 is linear. Since

|(Tx)n| ≤

∞
∑

m=n

|xm| ≤ ‖x‖1,

we certainly have ‖Tx‖∞ ≤ ‖x‖1 and T ∈ B(ℓ1, c0).
Now we identify ℓ1 with c

∗
0 and ℓ∞ with ℓ1

∗
via the maps y 7→ ϕy and x 7→ ψx defined in a

previous problem. Now if x, y ∈ ℓ1, we have — using Fubini’s Theorem to justify the manipulations
with sums —

(T ∗ϕx)(y) = ϕx(Ty)

=

∞
∑

n=1

xn(Ty)n

=

∞
∑

n=1

∞
∑

m=n

xnym

=
∑

{ (n,m)∈N×N:m≥n }

xnym

=
∞
∑

m=1

m
∑

n=1

xnym

=

∞
∑

m=1

ym

(

m
∑

n=1

xn

)

= ψz(y),

where z ∈ ℓ∞ is given by zm :=
∑m

n=1 xn. Therefore as a map from ℓ1 → ℓ∞, we have T ∗x = z.
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