Homework Assignment #3
Due Wednesday, February 3rd

INSTRUCTIONS: As usual, for the “true/false” questions, just circle the correct answer. No
justifications are required, but don’t guess. You score is based on #right minus #wrong.

1. TRUE or FALSE: The dual of any normed vector space is a Banach space.

2. TRUE or FALSE: If X and Y are Banach spaces and T': X — Y is a surjective linear
map, then 7" is bounded.

ANS: FALSE: But constructing a counter example is tedious. Let X be any infinite dimensional
Banach space. Then X has a basis {x,}.ca as a vector space over F. (It is a consequence of the
Baire Category Theorem that A must be uncountable! You might want to prove that for yourself.)
Let {a,}22; be any countable subset of A. We can define a linear functional ¢ : X — F simply by
arbitrarily specifying what ¢ does to each x,. In particular, I can define

() n||z., || if a = a,, and
Zq) =
0 otherwise.

Let y, = (n||za, ||) ‘24, Then y, — 0 in X. But ¢(y,) = 1 for all n. Therefore, ¢(y,) # 0.
Therefore ¢ is not continuous at 0, and therefore not bounded.

3. TRUE or FALSE: If Y is a closed subspace of a normed vector space X and if z € X'\Y,
then there is a ¢ € X* such that ¢(y) =0 for all y € Y and ¢(z) = 1.

4. TRUE or FALSE: Suppose that X and Y are Banach spaces and that T}, : X — Y is a
bounded linear map for n = 1,2,3,.... Suppose that there is a linear operator Ty : X — Y
such that for each z € X, we have T,,x — Tox. Then Tj is bounded.

ANS: Since {T}, }°2, is pointwise bounded, by the Principle of Uniform Boundedness, there is a
M such that |T,|| < M for all n > 1. Now it follows easily that |Tp|| < M.

5. Suppose that Y is a subspace of a normed vector space X. Show that the closure of Y is
given by
Y = ﬂ{kerap cp € X and Y C kerg }.



6. Work E.2.3.2 in the text. If may be helpful to think of ¢y as Cy(N). Then if x € C.(N),
we have © = Y ,,0,,, where the z,, are scalars and d,, is the function taking the value 1 at n
and 0 elsewhere.

ANS: This shouldn’t be so hard. Recall that ¢ and ¢y are subspaces of />°. It is easy to see that

coo := C.(N) can be viewed as a dense subspace of either ¢y or ¢.
Furthermore, if x € £~ and y € ¢', then

[eS) )
S el < oo 3 yal = llzllocllyll. (1)
n=1 n=1

Therefore, if y € ¢!, then we can define ¢, : ¢¢ — F by

o]
@y(x) = anyna
n=1

and |¢y || < |lylli. Of course, given € > 0, there is a N such that

N
D 1yl = llylh —«.
n=1

For z € F, let sgn(z) equal z/|z| if z # 0, and 0 otherwise. (Thus sgn(z)z = |z| for all z.) Define
T € ¢y by

sgn(y,) ifn < N, and
Ty =
0 otherwise.

Then x has norm at most one, and

N
ey(@) = lyal = llylh — e
n=1

Therefore ||¢, | = ||y|l1, and y — ¢, is an isometry of ¢! into ¢j. (It is obviously linear and one-to-one
since it is isometric.) We just have to see that it is surjective.
Suppose that ¢ € ¢f. Define y,, := ¢(d,). For any N, define

N sgn(y,) ifn <N, and
€T =
" 0 otherwise.

Then 2V = 22;1 se0(Yn)0n, ||V ]|o < 1 and 2V € ¢go C co. Since

N
(™) =" lyal < lell,
n=1

y = (yn) is in £1. Since ¢ = ¢, on cqp, and since cqg is dense in cg, we must have p = ¢, as desired.
This proves that ¢ is (isometrically isomorphic to) £*.
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Now start with z € £°°. Then (1) implies that we get a functional 1, : ! — F defined by

¢z(y) = Z InYn,
n=1

and that ||1;] < ||z||eo- If z € €°° and if € > 0, then there is a k such that |zx| > ||z]|c — €. Since
|6x]|1 = 1 and since [, (6x)| < ||z]lco — €, We see that  +— 1), is an isometry of £ into /1. To see
that this map is surjective, we proceed as above.! Given 1 € 1", let x,, := 1(6,,). Since |z,,| < ||%]],
x = (x,) € £>°. Since ¥ = ¥, on ¢pp and since cqg is dense in £', we’ve shown that 1 = 1), and that
(' is (isometrically isomorphic to) £

Now let’s look at ¢*. Define A : ¢ — F by A(z) = lim, #,. Then A € ¢* and ||\|| = 1. Now
suppose that ¢ € ¢*. Then the restriction of ¢ to ¢y C ¢ is, by the first part of this problem, given
by ¢, for some y € ¢!. On the other hand, if = € ¢, then  — A\(x) - 1 € ¢o, where 1 denotes the
constant sequence. If L := (1), then

(@) = py(@) + @)L =D yn).

Thus every ¢ € ¢* is of the form
p(x) = py(x) + 2A(x)

for some y € ¢! and z € F. Furthermore, a straightforward computation shows that ||| = ||ly|l1+]z|-
Thus we get an isometric isomorphism of C @ ¢! onto ¢* where the norm of the latter is given by
I(z,9)|l :== |z| + [|y|l1. However it is easy to see that C @ ¢* is isometrically isomorphic to ¢: just

send (27 (yn)) to (Za Y1,Y2,--- )

. . . . *
Finally, ¢, and therefore ¢, can’t be reflexive since ¢q is separable and ¢jj* = (17 =2 ¢>°

is not.

7. Work E.2.3.4 in the text.

ANS: Let { ¢, } be dense in X*, and choose x,, € X such that |z, | = 1 and such that |¢,(z,)] >
llonll. Let Y be the closed linear span of the z,,. Then Y is separable (since the rational span of
the x,, is dense in Y'). If X =Y, then we’re done. Otherwise, our Corollary 2.3.5 implies that there
is p € X* such that ||¢|| = 1 and such that ¢(y) = 0 for all y € Y. In particular, ¢(z,) = 0 for all
n. But there is a n such that [[¢ — ¢,|| < 1. In particular, [¢,| > 1. But then

lp(@n)| = lon(Tn) — (Pn(Tn) — @(zn)]

> |on(mn)] = (¢ — on)(@0)]

o1y
4 87

This contradicts the fact that |p(z,)| = 0. Therefore Y = X and we’re done.

ISince counting measure on N is o-finite, we could have appealed to the fact that L'(X, M,pu)* is
L>(X, M, ) whenever the measure space is o-finite, but that would be overkill.



8. Work E.2.3.5 in the text.

ANS: First some comments. For any Banach space X, ¢ : X — X** is an isometric injection. We
say that X is reflexive if ¢ is surjective. Technically, that is not the same as showing that X and
X** are isomorphic. Thus saying that since X reflexive implies that X and X** are isomorphic, we
have X* and X*** isomorphic is not quite enough to show that X* is reflexive.

Anyway, to the problem: Assume first that X is reflexive. To show that X* is reflexive, we
need to show that the canonical injection ¢tx+ : X* — X*** is surjective. To this end, suppose that
® € X***. Since the composition of bounded maps is bounded, we can define p € X* by

p(z) = ®(i(x)).

Thus we’ll be done once we prove that ¢x«(¢) = ®. However, since «(z) is a typical element of X**
we can compute that

vx- () (e(x)) = u(x) ()
o(z)

= ®(u(x)).

This proves that tx«(p) = ®, and finishes the first half of the problem.

Now suppose that X™* is reflexive so that, in the notation above, tx« : X* — X*** is surjective.
If X were not reflexive, then since i(X) is an isometric image of X, it is complete and therefore it
is a closed proper subspace of X**. Therefore, by Corollary 2.3.5, there is a ® € X*** such that
|®]| =1 and such that ®(.(X)) = {0}. By assumption, we have ® = 1x+ (i) for some ¢ € X*. But
then for all z € X we have

0=2o(u(z))

But this is absurd, since this implies ¢ = 0 in which case ® = tx«(p) is zero. Thus we must have
1(X) equal to all of X** and X is reflexive.

9. Work E.2.3.7 in the text.

ANS: One of the challenges here is to write your thoughts down coherently and to properly justify
the manipulations with sums.
If £ € £', then for all € > 0, there is a N such that n > N implies

oo oo
‘Z xm‘ < Z |xm| < €.
m=n m=n

Therefore

(Tx), = Z Tm
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defines an element Tz in ¢g. Clearly, T : £! — ¢y is linear. Since

o0
(T2)a] < Y f@m] < 2]y,
m=n

we certainly have || Tz||o < ||z|l1 and T € B(£, ).

Now we identify ¢! with ¢ and > with 0" via the maps y — ¢y and z +— 1), defined in a
previous problem. Now if 2,y € ¢!, we have — using Fubini’s Theorem to justify the manipulations
with sums —

(T*(Pw)(y) = Pz (Ty)

= Z xn(Ty)n

0o oo
E § TnYm
n=1m=n

= Z TnYm

{(n,m)eENXN:m>n}

o m
= Z Zmnym

m=1n=1
= Z ym(z xn)
m=1 n=1
=1, (y)a

where z € (> is given by z,, := >, ,. Therefore as a map from ¢! — ¢>°, we have T*x = z.



