Math 113 Homework Assignment Number Two Due Wednesday, January 20th

INSTRUCTIONS: As usual, for the "true/false" questions, just circle the correct answer. No justifications are required, but don't guess. You score is based on #right minus #wrong.

1. TRUE or FALSE: Every finite dimensional normed vector space is a Banach space.

2. TRUE or FALSE: Every compact Hausdorff space is a normal topological space.

3. TRUE or FALSE: If W is a closed subspace of a normed vector space V, then the quotient map $q: V \to V/W$ has norm one provided $W \neq V$.

4. **TRUE or FALSE**: Suppose that V and W are normed vector spaces and that $T: V \rightarrow W$ is linear. If V is finite dimensional, then T is bounded.

5. TRUE or FALSE: Let $C^1_{\mathbf{R}}([0,1])$ be the set of real-valued functions on [0,1] with a continuous derivative on [0,1]. Let $||f|| := ||f||_{\infty} + ||f'||_{\infty}$. Then $C^1_{\mathbf{R}}([0,1])$ is a Banach space with respect to $|| \cdot ||$.¹

6. Work E.1.2.9 in the text.

7. Work E.2.1.1 in the text.

8. Define two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on a vector space V to be equivalent in they determine the same topology on V. Prove that $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent if and only if there are nonzero positive constants c and d such that

$$c \|v\|_1 \le \|v\|_2 \le d \|v\|_1$$
 for all $v \in V$.

9. (After Monday's lecture): Suppose that X is a locally compact Hausdorff space. Show that $C_0(X)$ is closed in $C^b(X)$ and that $C_c(X)$ is dense in $C_0(X)$.

¹You may want to use the result that if $f_n \to f$ uniformly on [0, 1] and each f_n is differentiable with $f'_n \to g$ uniformly on [0, 1], then f is differentiable and f' = g. A proof of this statement follows easily from Theorem 7.17 of Rudin's *Principles of Real Analysis*.

10. Let X be a normed vector space and let $B = \{x \in X : ||x|| \le 1\}$ be the *unit ball*. Show that if B is compact, then X is finite dimensional.² Since this is E.2.1.3 in the text, I was embarrassed not to be able to give a "quick" proof. You can either follow my steps below, or provide a better proof yourself.³

(a) Let $V = \{x \in X : ||x|| < 1\}$ be the open unit ball. Show that there is a finite set $\{x_1, \ldots, x_n\} \subset X$ such that

$$B \subset \bigcup_{i=1}^{n} x_i + \frac{1}{2}V$$

(b) Let $Y = \text{span}\{x_1, \ldots, x_n\}$ and conclude that

$$V \subset Y + \frac{1}{2}V$$

(c) Let

$$Z := \bigcap_{n} (Y + \frac{1}{2^n}V).$$

Observe that $V \subset Z$ and prove that Z = Y.

(d) Conclude that Y = X.

Remark. I thought E.2.1.6, E.2.1.8, E.2.1.9 and E.2.1.10 all illustrated some interesting examples of Banach spaces, but I couldn't bear the thought of more to grade.

 $^{^{2}}$ It is easy to go from here to showing that any normed vector space that is locally compact is necessarily finite dimensional.

³In fact, the "steps below" aren't my original ones. An student in the 2007 instance of this course, Chor Lam, came up with the "improved" version here. Can you find a better one?