Math 113 Homework Assignment Number Two Due Wednesday, January 20th

INSTRUCTIONS: As usual, for the "true/false" questions, just circle the correct answer. No justifications are required, but don't guess. You score is based on #right minus #wrong.

1. TRUE or FALSE: Every finite dimensional normed vector space is a Banach space.

2. TRUE or FALSE: Every compact Hausdorff space is a normal topological space.

3. TRUE or FALSE: If W is a closed subspace of a normed vector space V, then the quotient map $q: V \to V/W$ has norm one provided $W \neq V$.

4. **TRUE or FALSE**: Suppose that V and W are normed vector spaces and that $T: V \rightarrow W$ is linear. If V is finite dimensional, then T is bounded.

5. TRUE or FALSE: Let $C^1_{\mathbf{R}}([0,1])$ be the set of real-valued functions on [0,1] with a continuous derivative on [0,1]. Let $||f|| := ||f||_{\infty} + ||f'||_{\infty}$. Then $C^1_{\mathbf{R}}([0,1])$ is a Banach space with respect to $|| \cdot ||$.¹

6. Work E.1.2.9 in the text.

ANS: Let (X, d) be a metric space. Fix $x \in X$. Let $B_{\epsilon}(x) = \{y \in X : d(x, y) < \epsilon\}$. I claim $\mathcal{N} = \{B_{\frac{1}{n}}(x)\}_{n=1}^{\infty}$ is a neighborhood base at x. Let V be a neighborhood of x. Then there is an $\epsilon > 0$ such that $x \in B_{\epsilon}(x) \subseteq V$. Choose n such that $\frac{1}{n} < \epsilon$. Now $x \in B_{\frac{1}{n}}(x) \subseteq B_{\epsilon}(x) \subseteq V$. This proves the claim.

Next suppose that (X, d) is second countable; let $\{A_n\}_{n=1}^{\infty}$ be a basis for the topology. For each $n \geq 1$, choose any $x_n \in A_n$. I claim that $D = \{x_n\}_{n=1}^{\infty}$ is dense in X, and hence, that X is separable. But if V is a nonempty open subset of X, say $x \in V$, then there is a n such that $x \in A_n \subset V$. Thus, $D \cap V \neq \emptyset$. The claim follows.

¹You may want to use the result that if $f_n \to f$ uniformly on [0, 1] and each f_n is differentiable with $f'_n \to g$ uniformly on [0, 1], then f is differentiable and f' = g. A proof of this statement follows easily from Theorem 7.17 of Rudin's *Principles of Real Analysis*.

Now suppose that (X, d) is separable; suppose that $D = \{x_n\}_{n=1}^{\infty}$ is dense. Let $\rho = \{B_{\frac{1}{m}}(x_n) : n, m \ge 1\}$. I will show that ρ is a basis and then it follows by definition that X must be second countable. Let V be open in X and suppose that $x \in V$. Then there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \subseteq V$. Choose m so that $\frac{1}{m} < \frac{\epsilon}{2}$. Since D is dense, there is a x_n such that $d(x_n, x) < \frac{1}{m}$. Then if $y \in B_{\frac{1}{m}}(x_n)$, we have $d(y, x) \le d(y, x_n) + d(x_n, x) < \frac{1}{m} + \frac{1}{m} < \epsilon$. Thus,

$$x \in B_{\frac{1}{m}}(x_n) \subseteq B_{\epsilon}(x) \subseteq V.$$

This establishes the claim.

7. Work E.2.1.1 in the text.

ANS: The interesting part of this problem is to show that "absolute convergence implies convergence" implies completeness.

Suppose that $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence. We accept that it suffices to show that $\{x_n\}_{n=1}^{\infty}$ has a convergent subsequence. Using the definition of Cauchy sequence, an induction argument shows that there is a subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ such that

$$\|x_{n_{k+1}} - x_{n_k}\| < \frac{1}{2^k}.$$

Let $y_1 := x_{n_1}$, and if $k \ge 2$, let $y_k := x_{n_{k+1}} - x_{n_k}$. Then $\sum y_k$ is absolutely convergent. By assumption, there is a $x \in X$ such that

$$x = \lim_{k} \sum_{i=1}^{k} y_i = \lim_{k} x_{n_k}.$$

That's what we wanted.

8. Define two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on a vector space V to be equivalent in they determine the same topology on V. Prove that $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent if and only if there are nonzero positive constants c and d such that

$$c \|v\|_1 \le \|v\|_2 \le d \|v\|_1$$
 for all $v \in V$.

ANS: This is similar to a result proved in lecture. Let *T* be the identity map from $(V, \|\cdot\|_1) \rightarrow (V, \|\cdot\|_2)$. If the norms are equivalent, then *T* is continuous and therefore bounded. Hence there is a $d \ge 0$ such that $\|x\|_2 = \|Tx\|_2 \le d\|x\|_1$ for all *x*. Since $\|\cdot\|_2$ is a norm, d > 0. Since T^{-1} is also continuous, there is a c > 0 such that $\|x\|_1 \le \frac{1}{c}\|x\|_2$ for all *x*. This is what we wanted to prove. If the norm inequalities hold, then *T* and T^{-1} are bounded maps — therefore they are continuous.

If the norm inequalities hold, then T and T^{-1} are bounded maps — therefore they are continuous with respect to the topologies induced by the norms. In other words, the identity map is a homeomorphism. Therefore the topologies coincide. 9. (After Monday's lecture): Suppose that X is a locally compact Hausdorff space. Show that $C_0(X)$ is closed in $C^b(X)$ and that $C_c(X)$ is dense in $C_0(X)$.

ANS: Suppose that $f_n \to f$ with each $f_n \in C_0(X)$. We want to see that $f \in C_0(X)$. Fix $\epsilon > 0$. It suffices to see that

$$\{x: |f(x)| \ge \epsilon\}$$

is compact. Since it is clearly closed, it is enough to see that it is contained in a compact set. But we can choose n such that $||f - f_n||_{\infty} < \epsilon/2$. Then

$$\{x: |f(x)| \ge \epsilon\} \subset \{x: |f_n(x)| \ge \epsilon/2\}.$$

Since the latter is compact, this suffices to show that $C_0(X)$ is closed in $C^b(X)$.

To see that $C_c(X)$ is dense in $C_0(X)$, let $f \in C_0(X)$. Fix $\epsilon > 0$. Then by assumption,

$$K := \{ x : |f(x)| \ge \epsilon \}$$

is compact. By the version of Urysohn's lemma we proved in lecture, there is a continuous function $\phi: X \to [0,1]$ with compact support such that $\phi(x) = 1$ for all $x \in K$. Since $\phi \in C_c(X)$, so is the pointwise product ϕf . But

 $\|f - \phi f\|_{\infty} \le \epsilon$

(since
$$|f(x) - \phi(x)f(x)| = (1 - \phi(x))|f(x)| \le |f(x)|$$
). This suffices

10. Let X be a normed vector space and let $B = \{x \in X : ||x|| \le 1\}$ be the *unit ball*. Show that if B is compact, then X is finite dimensional.² Since this is E.2.1.3 in the text, I was embarrassed not to be able to give a "quick" proof. You can either follow my steps below, or provide a better proof yourself.³

(a) Let $V = \{x \in X : ||x|| < 1\}$ be the open unit ball. Show that there is a finite set $\{x_1, \ldots, x_n\} \subset X$ such that

$$B \subset \bigcup_{i=1}^{n} x_i + \frac{1}{2}V$$

(b) Let $Y = \text{span}\{x_1, \dots, x_n\}$ and conclude that

$$V \subset Y + \frac{1}{2}V$$

²It is easy to go from here to showing that any normed vector space that is locally compact is necessarily finite dimensional.

³In fact, the "steps below" aren't my original ones. An student in the 2007 instance of this course, Chor Lam, came up with the "improved" version here. Can you find a better one?

(c) Let

$$Z := \bigcap_{n} (Y + \frac{1}{2^n}V).$$

Observe that $V \subset Z$ and prove that Z = Y.

(d) Conclude that Y = X.

ANS: Actually, Chor's solution was a bit cleaner than mine. (Well, his idea was cleaner, his execution left a bit to the imagination.)

Once you have $V \subset Y + \frac{1}{2}V$, we have $V \subset Y + \frac{1}{2}(Y + \frac{1}{2}V) = Y + \frac{1}{4}V$. Iterating,

$$V \subset Z := \bigcap_{n} (Y + \frac{1}{2^n}V).$$

Clearly, $Y \subset Z$. But it $z \in Z$, then there are $y_n \in Y$ such that $||z - y_n|| < \frac{1}{2^n}$. But then $y_n \to z$, and since Y is closed, $z \in Y$. Thus Z = Y, and we have

 $V \subset Y$.

This implies that Y = X. Therefore X is finite dimensional (since Y is).

Remark. I thought E.2.1.6, E.2.1.8, E.2.1.9 and E.2.1.10 all illustrated some interesting examples of Banach spaces, but I couldn't bear the thought of more to grade.