Math 113
 Homework Assignment Number Two Due Wednesday, January $20^{\text {th }}$

Instructions: As usual, for the "true/false" questions, just circle the correct answer. No justifications are required, but don't guess. You score is based on \#right minus \#wrong.

1. TRUE or FALSE: Every finite dimensional normed vector space is a Banach space.
2. TRUE or FALSE: Every compact Hausdorff space is a normal topological space.
3. TRUE or FALSE: If W is a closed subspace of a normed vector space V, then the quotient $\operatorname{map} q: V \rightarrow V / W$ has norm one provided $W \neq V$.
4. TRUE or FALSE: Suppose that V and W are normed vector spaces and that $T: V \rightarrow$ W is linear. If V is finite dimensional, then T is bounded.
5. TRUE or FALSE: Let $C_{\mathbf{R}}^{1}([0,1])$ be the set of real-valued functions on $[0,1]$ with a continuous derivative on $[0,1]$. Let $\|f\|:=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}$. Then $C_{\mathbf{R}}^{1}([0,1])$ is a Banach space with respect to $\|\cdot\| .{ }^{1}$
6. Work E.1.2.9 in the text.

ANS: Let (X, d) be a metric space. Fix $x \in X$. Let $B_{\epsilon}(x)=\{y \in X: d(x, y)<\epsilon\}$. I claim $\mathcal{N}=\left\{B_{\frac{1}{n}}(x)\right\}_{n=1}^{\infty}$ is a neighborhood base at x . Let V be a neighborhood of x. Then there is an $\epsilon>0$ such that $x \in B_{\epsilon}(x) \subseteq V$. Choose n such that $\frac{1}{n}<\epsilon$. Now $x \in B_{\frac{1}{n}}(x) \subseteq B_{\epsilon}(x) \subseteq V$. This proves the claim.

Next suppose that (X, d) is second countable; let $\left\{A_{n}\right\}_{n=1}^{\infty}$ be a basis for the topology. For each $n \geq 1$, choose any $x_{n} \in A_{n}$. I claim that $D=\left\{x_{n}\right\}_{n=1}^{\infty}$ is dense in X, and hence, that X is separable. But if V is a nonempty open subset of X, say $x \in V$, then there is a n such that $x \in A_{n} \subset V$. Thus, $D \cap V \neq \emptyset$. The claim follows.

[^0]Now suppose that (X, d) is separable; suppose that $D=\left\{x_{n}\right\}_{n=1}^{\infty}$ is dense. Let $\rho=\left\{B_{\frac{1}{m}}\left(x_{n}\right)\right.$: $n, m \geq 1\}$. I will show that ρ is a basis and then it follows by definition that X must be second countable. Let V be open in X and suppose that $x \in V$. Then there exists $\epsilon>0$ such that $B_{\epsilon}(x) \subseteq V$. Choose m so that $\frac{1}{m}<\frac{\epsilon}{2}$. Since D is dense, there is a x_{n} such that $d\left(x_{n}, x\right)<\frac{1}{m}$. Then if $y \in B_{\frac{1}{m}}\left(x_{n}\right)$, we have $d(y, x) \leq d\left(y, x_{n}\right)+d\left(x_{n}, x\right)<\frac{1}{m}+\frac{1}{m}<\epsilon$. Thus,

$$
x \in B_{\frac{1}{m}}\left(x_{n}\right) \subseteq B_{\epsilon}(x) \subseteq V
$$

This establishes the claim.

7. Work E.2.1.1 in the text.

ANS: The interesting part of this problem is to show that "absolute convergence implies convergence" implies completeness.

Suppose that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence. We accept that it suffices to show that $\left\{x_{n}\right\}_{n=1}^{\infty}$ has a convergent subsequence. Using the definition of Cauchy sequence, an induction argument shows that there is a subsequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ such that

$$
\left\|x_{n_{k+1}}-x_{n_{k}}\right\|<\frac{1}{2^{k}}
$$

Let $y_{1}:=x_{n_{1}}$, and if $k \geq 2$, let $y_{k}:=x_{n_{k+1}}-x_{n_{k}}$. Then $\sum y_{k}$ is absolutely convergent. By assumption, there is a $x \in X$ such that

$$
x=\lim _{k} \sum_{i=1}^{k} y_{i}=\lim _{k} x_{n_{k}}
$$

That's what we wanted.
8. Define two norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ on a vector space V to be equivalent in they determine the same topology on V. Prove that $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ are equivalent if and only if there are nonzero positive constants c and d such that

$$
c\|v\|_{1} \leq\|v\|_{2} \leq d\|v\|_{1} \quad \text { for all } v \in V
$$

ANS: This is similar to a result proved in lecture. Let T be the identity map from $\left(V,\|\cdot\|_{1}\right) \rightarrow$ $\left(V,\|\cdot\|_{2}\right)$. If the norms are equivalent, then T is continuous and therefore bounded. Hence there is a $d \geq 0$ such that $\|x\|_{2}=\|T x\|_{2} \leq d\|x\|_{1}$ for all x. Since $\|\cdot\|_{2}$ is a norm, $d>0$. Since T^{-1} is also continuous, there is a $c>0$ such that $\|x\|_{1} \leq \frac{1}{c}\|x\|_{2}$ for all x. This is what we wanted to prove.

If the norm inequalities hold, then T and T^{-1} are bounded maps - therefore they are continuous with respect to the topologies induced by the norms. In other words, the identity map is a homeomorphism. Therefore the topologies coincide.
9. (After Monday's lecture): Suppose that X is a locally compact Hausdorff space. Show that $C_{0}(X)$ is closed in $C^{b}(X)$ and that $C_{c}(X)$ is dense in $C_{0}(X)$.

ANS: Suppose that $f_{n} \rightarrow f$ with each $f_{n} \in C_{0}(X)$. We want to see that $f \in C_{0}(X)$. Fix $\epsilon>0$. It suffices to see that

$$
\{x:|f(x)| \geq \epsilon\}
$$

is compact. Since it is clearly closed, it is enough to see that it is contained in a compact set. But we can choose n such that $\left\|f-f_{n}\right\|_{\infty}<\epsilon / 2$. Then

$$
\{x:|f(x)| \geq \epsilon\} \subset\left\{x:\left|f_{n}(x)\right| \geq \epsilon / 2\right\} .
$$

Since the latter is compact, this suffices to show that $C_{0}(X)$ is closed in $C^{b}(X)$.
To see that $C_{c}(X)$ is dense in $C_{0}(X)$, let $f \in C_{0}(X)$. Fix $\epsilon>0$. Then by assumption,

$$
K:=\{x:|f(x)| \geq \epsilon\}
$$

is compact. By the version of Urysohn's lemma we proved in lecture, there is a continuous function $\phi: X \rightarrow[0,1]$ with compact support such that $\phi(x)=1$ for all $x \in K$. Since $\phi \in C_{c}(X)$, so is the pointwise product ϕf. But

$$
\|f-\phi f\|_{\infty} \leq \epsilon
$$

(since $|f(x)-\phi(x) f(x)|=(1-\phi(x))|f(x)| \leq|f(x)|)$. This suffices.
10. Let X be a normed vector space and let $B=\{x \in X:\|x\| \leq 1\}$ be the unit ball. Show that if B is compact, then X is finite dimensional. ${ }^{2}$ Since this is E.2.1.3 in the text, I was embarrassed not to be able to give a "quick" proof. You can either follow my steps below, or provide a better proof yourself. ${ }^{3}$
(a) Let $V=\{x \in X:\|x\|<1\}$ be the open unit ball. Show that there is a finite set $\left\{x_{1}, \ldots, x_{n}\right\} \subset X$ such that

$$
B \subset \bigcup_{i=1}^{n} x_{i}+\frac{1}{2} V
$$

(b) Let $Y=\operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}$ and conclude that

$$
V \subset Y+\frac{1}{2} V
$$

[^1](c) Let
$$
Z:=\bigcap_{n}\left(Y+\frac{1}{2^{n}} V\right)
$$

Observe that $V \subset Z$ and prove that $Z=Y$.
(d) Conclude that $Y=X$.

ANS: Actually, Chor's solution was a bit cleaner than mine. (Well, his idea was cleaner, his execution left a bit to the imagination.)

Once you have $V \subset Y+\frac{1}{2} V$, we have $V \subset Y+\frac{1}{2}\left(Y+\frac{1}{2} V\right)=Y+\frac{1}{4} V$. Iterating,

$$
V \subset Z:=\bigcap_{n}\left(Y+\frac{1}{2^{n}} V\right) .
$$

Clearly, $Y \subset Z$. But it $z \in Z$, then there are $y_{n} \in Y$ such that $\left\|z-y_{n}\right\|<\frac{1}{2^{n}}$. But then $y_{n} \rightarrow z$, and since Y is closed, $z \in Y$. Thus $Z=Y$, and we have

$$
V \subset Y .
$$

This implies that $Y=X$. Therefore X is finite dimensional (since Y is).
Remark. I thought E.2.1.6, E.2.1.8, E.2.1.9 and E.2.1.10 all illustrated some interesting examples of Banach spaces, but I couldn't bear the thought of more to grade.

[^0]: ${ }^{1}$ You may want to use the result that if $f_{n} \rightarrow f$ uniformly on $[0,1]$ and each f_{n} is differentiable with $f_{n}^{\prime} \rightarrow g$ uniformly on $[0,1]$, then f is differentiable and $f^{\prime}=g$. A proof of this statement follows easily from Theorem 7.17 of Rudin's Principles of Real Analysis.

[^1]: ${ }^{2}$ It is easy to go from here to showing that any normed vector space that is locally compact is necessarily finite dimensional.
 ${ }^{3}$ In fact, the "steps below" aren't my original ones. An student in the 2007 instance of this course, Chor Lam, came up with the "improved" version here. Can you find a better one?

