Math 113 - Spring 2005 - Homework \#1

1. Fill in the details of the proof of the proposition from lecture that if T is a normal operator on a finite-dimensional complex Hilbert space \mathcal{H}, then \mathcal{H} has an orthonormal basis of eigenvectors for T.
2. Let A be a normed vector space and let J be a proper subspace of A. Also let $\pi: A \rightarrow A / J$ be the quotient map from A onto the the quotient vector space A / J.
(a) Show that

$$
\|\pi(x)\|:=\inf _{y \in J}\|x+y\|
$$

is a norm on A / J. (This norm is called the quotient norm.)
(b) Show that for all $\epsilon>0$, there is a $x \in A$ such that $\|x\|=1$ and $\|\pi(x)\| \geq 1-\epsilon$.
(c) Show that π has norm 1 .
(d) Show that if A is a Banach space, then A / J is a Banach space with respect to the quotient norm.
(e) Show that if in addition, A is a Banach algebra, then A / J is a Banach algebra with respect to the quotient norm.
3. Suppose that A is a Banach space and that $f:[a, b] \rightarrow A$ is a continuous function. Recall that a partition \mathscr{P} of $[a, b]$ is simply a finite subset of the form $\left\{a=t_{0}<t_{1}<\cdots<t_{n}=b\right\}$. We define $\|\mathscr{P}\|=\max _{1 \leq k \leq n} \Delta t_{i}$, were $\Delta t_{i}:=t_{i}-t_{i-1}$. If $\zeta \in[a, b]^{n}=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ is such that $z_{i} \in\left[t_{i-1}, t_{i}\right]$, then

$$
\mathscr{R}(f, \mathscr{P}, \zeta):=\sum_{i=1}^{n} f\left(z_{i}\right) \Delta t_{i} .
$$

We say that \mathscr{Q} is a refinement of \mathscr{P} is \mathscr{P} is a subset of \mathscr{Q}.
(a) Show that for all $\epsilon>0$ there is a $\delta>0$ such that if $\|\mathscr{P}\|<\delta$ and if \mathscr{Q} is a refinement of \mathscr{P}, then

$$
\left\|\mathscr{R}(f, \mathscr{P}, \zeta)-\mathscr{R}\left(f, \mathscr{Q}, \zeta^{\prime}\right)\right\|<\epsilon
$$

for any appropriate ζ and ζ^{\prime}.
(b) Let \mathscr{P}_{n} the uniform partition of $[a, b]$ into 2^{n} subintervals, and let $\zeta_{n}=\left(t_{0}, t_{1}, \ldots, t_{n-1}\right)$. Let

$$
a_{n}=\mathscr{R}\left(f, \mathscr{P}_{n}, \zeta_{n}\right)
$$

Show that $\left\{a_{n}\right\}$ is Cauchy and define

$$
\int_{a}^{b} f(t) d t:=\lim _{n} a_{n}
$$

(c) Show that for all $\epsilon>0$ there is a $\delta>0$ such that $\|\mathscr{P}\|<\delta$ implies that

$$
\left\|\mathscr{R}(F, \mathscr{P}, \zeta)-\int_{a}^{b} f(t) d t\right\|<\epsilon
$$

and any appropriate ζ.
(d) Show that if A is a Banach algebra and if $x \in A$, then

$$
x \int_{a}^{b} f(t) d t=\int_{a}^{b} x f(t) d t \quad \int_{a}^{b} f(t) d t x=\int_{a}^{b} f(t) x d t
$$

(e) Show that if $\Lambda \in A^{*}$, then

$$
\Lambda\left(\int_{a}^{b} f(t) d t\right)=\int_{a}^{b} \Lambda(f(t)) d t
$$

In particular, if there is an $x \in A$ such that

$$
\Lambda(x)=\int_{a}^{b} \Lambda(f(t)) d t \quad \text { for all } \Lambda \in A^{*}
$$

(so that x is the weak integral of f), then

$$
x=\int_{a}^{b} f(t) d t
$$

