Math 113 – Spring 2005 – Homework #1

1. Fill in the details of the proof of the proposition from lecture that if T is a normal operator on a finite-dimensional complex Hilbert space \mathcal{H} , then \mathcal{H} has an orthonormal basis of eigenvectors for T.

2. Let A be a normed vector space and let J be a proper subspace of A. Also let $\pi : A \to A/J$ be the quotient map from A onto the the quotient vector space A/J.

(a) Show that

$$\|\pi(x)\| := \inf_{y \in J} \|x + y\|$$

is a norm on A/J. (This norm is called the quotient norm.)

- (b) Show that for all $\epsilon > 0$, there is a $x \in A$ such that ||x|| = 1 and $||\pi(x)|| \ge 1 \epsilon$.
- (c) Show that π has norm 1.
- (d) Show that if A is a Banach space, then A/J is a Banach space with respect to the quotient norm.
- (e) Show that if in addition, A is a Banach algebra, then A/J is a Banach algebra with respect to the quotient norm.

3. Suppose that A is a Banach space and that $f : [a, b] \to A$ is a continuous function. Recall that a partition \mathscr{P} of [a, b] is simply a finite subset of the form $\{a = t_0 < t_1 < \cdots < t_n = b\}$. We define $\|\mathscr{P}\| = \max_{1 \le k \le n} \Delta t_i$, were $\Delta t_i := t_i - t_{i-1}$. If $\zeta \in [a, b]^n = (z_1, z_2, \ldots, z_n)$ is such that $z_i \in [t_{i-1}, t_i]$, then

$$\mathscr{R}(f,\mathscr{P},\zeta) := \sum_{i=1}^{n} f(z_i) \Delta t_i.$$

We say that \mathcal{Q} is a refinement of \mathscr{P} is \mathscr{P} is a subset of \mathcal{Q} .

(a) Show that for all $\epsilon > 0$ there is a $\delta > 0$ such that if $||\mathscr{P}|| < \delta$ and if \mathscr{Q} is a refinement of \mathscr{P} , then

$$\left\|\mathscr{R}(f,\mathscr{P},\zeta)-\mathscr{R}(f,\mathscr{Q},\zeta')\right\|<\epsilon$$

for any appropriate ζ and ζ' .

(b) Let \mathscr{P}_n the uniform partition of [a, b] into 2^n subintervals, and let $\zeta_n = (t_0, t_1, \dots, t_{n-1})$. Let

$$a_n = \mathscr{R}(f, \mathscr{P}_n, \zeta_n)$$

Show that $\{a_n\}$ is Cauchy and define

$$\int_{a}^{b} f(t) \, dt := \lim_{n} a_n.$$

(c) Show that for all $\epsilon > 0$ there is a $\delta > 0$ such that $\|\mathscr{P}\| < \delta$ implies that

$$\|\mathscr{R}(F,\mathscr{P},\zeta) - \int_{a}^{b} f(t) \, dt\| < \epsilon$$

and any appropriate ζ .

(d) Show that if A is a Banach algebra and if $x \in A$, then

$$x\int_{a}^{b} f(t) dt = \int_{a}^{b} xf(t) dt \qquad \qquad \int_{a}^{b} f(t) dt x = \int_{a}^{b} f(t) x dt.$$

(e) Show that if $\Lambda \in A^*$, then

$$\Lambda\left(\int_{a}^{b} f(t) \, dt\right) = \int_{a}^{b} \Lambda\left(f(t)\right) \, dt.$$

In particular, if there is an $x \in A$ such that

$$\Lambda(x) = \int_{a}^{b} \Lambda(f(t)) dt \quad \text{for all } \Lambda \in A^{*}$$

(so that x is the weak integral of f), then

$$x = \int_{a}^{b} f(t) \, dt$$