Math 112
 Introduction to Riemannian Geometry
 Spring 2006
 Assignment 5
 Due May 30, 2006

Chp. 5 (do Carmo) 2, $3 \& 5$
Chp. 8 (do Carmo): 5

1. Let $\gamma:[a, b] \rightarrow(M, g)$ be a geodesic and let \mathcal{V}_{γ} be the vector space of piecewise smooth vector fields along γ. Recall that the index form along γ is the bilinear form $I: \mathcal{V}_{\gamma} \times \mathcal{V}_{\gamma} \rightarrow \mathbb{R}$ given by

$$
I(V, W) \equiv \int_{a}^{b}\left\{\left\langle V^{\prime}, \mathcal{W}^{\prime}\right\rangle-\left\langle R\left(\gamma^{\prime}, V\right) \gamma^{\prime}, W\right\rangle\right\} d t
$$

Now let $\mathcal{V}_{\gamma}^{0}=\left\{V \in \mathcal{V}_{\gamma}: V(a)=V(b)=0\right\}$. Show that a vector field J along γ is a Jacobi field if and only if $I(J, V)=0$ for every $V \in \mathcal{V}_{\gamma}^{0}$.

