Math 112 Introduction to Riemannian Geometry Spring 2006 Assignment 5 Due May 30, 2006

Chp. 5 (do Carmo) 2, 3 & 5 Chp. 8 (do Carmo): 5

1. Let $\gamma : [a, b] \to (M, g)$ be a geodesic and let \mathcal{V}_{γ} be the vector space of piecewise smooth vector fields along γ . Recall that the index form along γ is the bilinear form $I : \mathcal{V}_{\gamma} \times \mathcal{V}_{\gamma} \to \mathbb{R}$ given by

$$I(V,W) \equiv \int_{a}^{b} \{ \langle V', \mathcal{W}' \rangle - \langle R(\gamma',V)\gamma',W \rangle \} dt.$$

Now let $\mathcal{V}^0_{\gamma} = \{V \in \mathcal{V}_{\gamma} : V(a) = V(b) = 0\}$. Show that a vector field J along γ is a Jacobi field if and only if I(J, V) = 0 for every $V \in \mathcal{V}^0_{\gamma}$.