Math 112
 Introduction to Riemannian Geometry
 Spring 2006
 Assignment 4
 Due May 9, 2006

Chp. 4 (do Carmo): 1, $2,3,4,6, \& 7$

1. Show that the geodesics γ of $\mathbb{C} P^{n}$ with $\gamma(0)=\pi(\tilde{x})=x$ are are of the form $t \mapsto \pi((\cos t) \tilde{x}+(\sin t) \tilde{v})$, where

$$
\pi:\left(S^{2 n+1}, g_{\mathrm{std}}\right) \rightarrow\left(\mathbb{C} P^{n}, h_{\mathrm{std}}\right)
$$

is the canonical Riemannian submerion and $\tilde{v} \in T_{\tilde{x}} S^{2 n+1} \leq T_{\tilde{x}} \mathbb{C}^{n+1}$ is orthogonal to \tilde{x} and $i \tilde{x}$.
2. Let M be a manifold with connection ∇. If Y is a vector field on M and $c: I \rightarrow M$ is a curve such that $c^{\prime}(0)=v \in T_{p} M$, then $\nabla_{v} Y$ depends only on the values of Y along c. That is if X is another vector field and $X \circ c=Y \circ c$, then $\nabla_{v} X=\nabla_{v} Y$.

