Math 112 Introduction to Riemannian Geometry Spring 2006 Assignment 1 Due April 6, 2006

Chp. 0 (do Carmo): 1, 2, 5, 8 & 12 (a & b)

- 1. Let $F:M\to N$ be a faction. Check that our definition of differentiability at a point $p\in M$ is independent of the coordinate chart used.
- 2. In class we observed that the atlases $\mathcal{A}_1 = \{(\mathbb{R}, \mathrm{id})\}$ and $\mathcal{A}_2 = \{(\mathbb{R}, t \stackrel{\phi}{\mapsto} t^3)\}$ define differentiable structures on \mathbb{R} , but they are not C^{∞} -compatible. However, these spaces are diffeomorphic. Construct an explicit diffeomorphism between \mathbb{R}_1 and \mathbb{R}_2 , where \mathbb{R}_i denotes \mathbb{R} endowed with the smooth structure determined by \mathcal{A}_i (i=1,2).
- 3. Recall that a topological space M is said to be **compact** if for any collection $\mathcal{O} = \{O_{\alpha}\}_{{\alpha} \in J}$ of open subsets such that $M = \cup O_{\alpha}$, there exists a finite subcollection $U_{\alpha_1}, \ldots, O_{\alpha_k} \in \mathcal{O}$ such that $M = \cup_1^k O_{\alpha_k}$. Let M be a compact smooth manifold and X a smooth vector field on M. Show that for each $p \in M$ the integral curve of X through p is defined for all time $t \in \mathbb{R}$.