
Math 112 : Introduction to Riemannian Geometry
Quotients and Manifolds

Note: The following is a brief outline of some concepts we will need in class. For more details on basic
topology and quotient spaces you should see Munkres’ “Topology: A First Course”. For information on
properly discontinuous actions you can check out Boothby from our reserve list.

Let M be a set. A topology on M is a collection T of subsets of M (called open sets or neighborhoods)
which satisfies the following properties.

1. ∅,M ∈ T

2. if {Uα}α∈J is a collection of open sets then ∪α∈JUα ∈ T ; that is ∪α∈JUα is open.

3. if U1, . . . , Uk is a finite collection of open sets, then ∩k
j=1Uj ∈ T ; that is, ∩k

j=1Uj is open.

The elements of T are called open sets. A subset A ⊂ M is said to be closed (w.r.t, the topology T ) if its
complement Ac is open.

A set M equipped with a choice of topology T is said to be a topological space. The topological
space is said to be Hausdorff if for any p 6= q ∈ M there exists open sets (i.e., neighborhoods) U and V
containing p and q respectively such that U ∩V = ∅. A metric space (X, d) is a prime example of a Hausdorff
topological space: in this case the topology is the collection of all sets U such that for each p ∈ U there
exists ε = ε(p) > 0 such that B(p, ε) ⊂ U .

Let M be a topological space and let ∼ be an equivalence relation on M . We then let M/ ∼ denote the
set of equivalence classes and let π : M → M/ ∼ be the canonical projection which sends p ∈ M to its
equivalence class [p] ∈ M/ ∼. We may then put a topology on M/ ∼ as follows. We will say that U ⊂ M/ ∼
is open if and only if π−1(U) is open. It is an easy exercise to check that this defines a topology. We call
this topology the quotient topology (induced by ∼).

A map f : X → Y between two topological spaces (X, TX) and (Y, TY ) is said to be continuous
if for any V ⊂ Y open (w.r.t. TY ) the set f−1(V ) is open in X (w.r.t. TX). We will say that f is a
homeomorphism if

1. f is bijective.

2. f : X → Y and f−1 : Y → X are continuous.

Now let Γ be a discrete group which acts on a topological space M via homeomorphisms. That is, for
each γ ∈ Γ we have a homeomorphism γ : M → M such that:

1. e : M → M is the identity map.

2. For any γ1, γ2 ∈ Γ we have (γ1γ2) · x = γ1 · (γ2 · x).

This action defines an equivalence relation ∼ on M by setting x ∼ y if and only if there exists γ ∈ M
such that γ · x = y. For each x ∈ M its equivalence class [x] is called an orbit and is denoted by Γx. We
denote the set of equivalence classes by M/Γ. The action of Γ on M is said to be free if γ · x = x for some
x ∈ M implies γ = e. The action of Γ on M is said to be properly discontinuous if whenever x, y ∈ M
do not belong to the same orbit there exist open sets U, V ⊂ M containing x and y respectively such that
γ · U ∩ V = ∅ for any γ ∈ Γ.

Theorem. Let M be a (Hausdorff) topological space and let Γ be a discrete group which acts freely and
properly discontinuously on M , then M/Γ is a Hausdorff topological space when endowed with the quotient
topology. Furthermore, suppose M has the structure of a C∞-manifold and Γ ≤ Diff(M), so that Γ acts via
diffeomorphisms. Then M/Γ has a C∞-structure with respect to which the canonical projection π : M → M/Γ
is a local diffeomorphism.



Example (The k-torus): Let M = Rk have the usual C∞-structure and let Γ = Zk be the group of
k-tuples of integers under addition. Then Γ acts on M via translations. Indeed, if x = (x1, . . . , xn) ∈ Rn

and γ = (n1, . . . , nk) ∈ Zk, then γ · x = x + γ = (x1 + n1, . . . , nk + nk) ∈ Rk. If we let Rk have its usual
C∞-structure, we see that Γ acts via diffeomorphimsms and this action is free and properly discontinuous.
By the above theorem T k = Rk/Zk admits a differentiable structure such that π : Rk → T k is a local
diffeomorphim. T k is known as the k-torus.

Example (Real Projective Space): Consider Sn ⊂ Rn+1 with the ususal C∞-structure and Γ = {id, A}
where A : Sn → Sn is the antipodal map given by A(x) = −x. So, Γ is isomorphic to Z2. One can check that
Γ acts by diffeomorphisms and that the action is free and properly discontinuous. Hence, RPn = Sn/Γ (the
real projective space of dimension n) is a differentiable manifold and π : Sn → RPn is a local diffeomorphism.

The above considerations are important to us because of the following theorem, which we will discuss
in class.

Theorem. Let (M, g) be a Riemannian manifold and let Γ ≤ Isom(M, g) be a discrete group of isometries
which act freely and properly discontinuously on M . Then the smooth manifold M/Γ admits a unique
Riemannian metric h̃ such that π : (M, g) → (M/Γ, h) is a Riemannian covering.

This will give us a way of constructing new examples of Riemannian manifolds from old ones.


