Mathematics 111

Spring 2011
Homework 6

1. Let T be a linear operator on a finite dimensional vector space V over a field k, and let $q_{1}\left|q_{2}\right| \cdots \mid q_{s}$ be the invariant factors associated to V as a torsion $k[x]$-module. Show that $q_{1} q_{2} \cdots q_{s}=c_{T}$, where c_{T} is the characteristic polynomial of T. Show that the minimal polynomial of T divides the characteristic polynomial. Note that this proves the Cayley-Hamilton theorem. Hint: You may use without proof (though you should think about it) that the determinant of a matrix of the form $\left(\begin{array}{cc}A & B \\ 0 & C\end{array}\right)$ with A and C square matrices is the product $\operatorname{det}(A) \operatorname{det}(C)$.
2. Find all rational and Jordan canonical forms of a matrix in $M_{5}(\mathbb{C})$ having minimal polynomial $x^{2}(x-1)$. Be sure to give the corresponding invariants and the characteristic polynomials.
3. Show that any linear operator T on a finite dimensional vector space (over a field of characteristic not equal to 2) which satisfies $T^{2}=I$ is diagonalizable. Give all possible Jordan forms for 4×4 matrices A with $A^{2}=I$.
4. Consider a matrix of the form $A=\left(\begin{array}{ccccc}\lambda & \mu & 0 & \ldots & 0 \\ 0 & \lambda & \mu & \ldots & 0 \\ 0 & 0 & \ddots & \ddots & 0 \\ 0 & 0 & \ldots & \lambda & \mu \\ 0 & 0 & \ldots & 0 & \lambda\end{array}\right)$, i.e., with diagonal λ and μ on the superdiagonal. Find the Jordan canonical form(s) of A. The answer should depend slightly on μ. What does your answer say about the form of Jordan blocks as introduced in the text in comparison with the way we defined them?
5. \#24, p501. Prove that there are no $3 \times 3 A$ matrices over \mathbb{Q} which satisfy $A^{8}=I$, but $A^{4} \neq I$.
6. \#19, p501. Prove that all $n \times n$ matrices over a field F having a fixed characteristic polynomial $f \in F[x]$ are similar if and only if f factors into distinct irreducibles in $F[x]$.
