Mathematics 111

Spring 2011
Homework 3

1. (Commutative diagrams gone mad) Given a ring R with identity and R-modules A, B, M, consider the following diagram with R-linear maps f, g :

A pullback for this diagram (also called a fiber product of f and g) consists of the following data:

- A module X and R-linear maps $p: X \rightarrow A, q: X \rightarrow B$ making the following diagram commute.

- For every R-module X^{\prime} admitting a commutative diagram of linear maps (same f, g)

there is a unique R-linear map $h: X^{\prime} \rightarrow X$ such that the following diagram commutes:

Now to the exercise: Let $X=\{(a, b) \in A \times B \mid f(a)=g(b)\}, p$ and q the standard projections to the factors A and B. Show that X together with the associated data form a pullback, i.e., verify that X is an R-module and that the above universal mapping property holds for this choice of X and maps p, q.
Remark: Dummit and Foote introduce the pullback as a subset of the direct sum $A \oplus B$. Categorically, you should find the direct product a more useful perspective.
2. Let R be a ring, and consider two exact sequences of R-modules

$$
0 \longrightarrow K \longrightarrow P \xrightarrow{\varphi} M \longrightarrow 0 \quad 0 \longrightarrow K^{\prime} \longrightarrow P^{\prime} \xrightarrow{\varphi^{\prime}} M \longrightarrow 0
$$

where P and P^{\prime} are projective. Show that as R-modules $K^{\prime} \oplus P \cong K \oplus P^{\prime}$.

Hint: Show there is an exact sequence

$$
0 \longrightarrow \text { ker } \pi \longrightarrow X \xrightarrow{\pi} P \longrightarrow 0
$$

with ker $\pi \cong K^{\prime}$ and where X is the fiber product of φ and φ^{\prime} as in the first problem. From this deduce that $X \cong K^{\prime} \oplus P$. Similarly, show $X \cong K \oplus P^{\prime}$.
3. Let V be a vector space over a field K, and let $\varphi: V \rightarrow V$ be a K-linear map.
(a) If V is finite dimensional, show that there is a positive integer m so that $\operatorname{Im}\left(\varphi^{m}\right) \cap$ $\operatorname{Ker}\left(\varphi^{m}\right)=\{0\}$.
(b) Show by example that this need not hold if V is infinite dimensional.
4. Let V be an n-dimensional vector space over a field K, and $T: V \rightarrow V$ a K-linear map satisfying $T^{n}=0$, but $T^{n-1} \neq 0$.
(a) Show that for $1 \leq j \leq n, \operatorname{rank}\left(T^{j}\right):=\operatorname{dim}_{k}\left(\operatorname{Im}\left(T^{j}\right)\right)$ equals $n-j$.
(b) Using the preceding part, show that there is a basis of V so that the matrix of T with respect to this basis is strictly upper triangular, which is to say it has zeros on and below the main diagonal.
5. Let $T: V \rightarrow V$ be a linear operator on a complex vector space. For two different T, we view V as a $\mathbb{C}[x]$-module in the usual way. In each case determine whether or not V is decomposable (as a $\mathbb{C}[x]$-module). If it is, write V as an appropriate direct sum and express the matrix of T with respect to the associated basis. If V is indecomposable, prove it.
(a) First consider T whose matrix with respect to a basis $B=\left\{e_{1}, e_{2}, e_{3}\right\}$ is $\left(\begin{array}{lll}3 & 1 & 0 \\ 0 & 3 & 2 \\ 0 & 0 & 3\end{array}\right)$.
(b) Second, consider (a different) T whose matrix with respect to a basis $B=$ $\left\{e_{1}, e_{2}, e_{3}\right\}$ is $\left(\begin{array}{lll}3 & 0 & 5 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right)$.

