Mathematics 111

Spring 2011
Homework 2

1. (Ir)reducible Modules
(a) Give an example of a module which is reducible, but not decomposable.
(b) Show that if an R-module M is irreducible, then it is cyclic, that is $M=R m$ for some $m \in M$. Characterize all irreducible \mathbb{Z}-modules.
(c) Suppose the M is an irreducible R-module. Show that $\operatorname{End}_{R}(M)$ is a division ring. (This is known as Schur's lemma).
2. Let R be a ring with identity. Show that the sequence of left R-modules

$$
0 \longrightarrow L \xrightarrow{\varphi} M \xrightarrow{\psi} N
$$

is exact if and only if for all left R-modules D, the sequence

$$
0 \longrightarrow \operatorname{Hom}_{R}(D, L) \xrightarrow{\varphi_{*}} \operatorname{Hom}_{R}(D, M) \xrightarrow{\psi_{*}} \operatorname{Hom}_{R}(D, N)
$$

is exact.
Hint: We have done the forward direction in class; for the converse, a single propitious choice of D can work, but you still need to sweat the details.
3. Let R be a ring with identity. Show that the sequence of left R-modules

$$
L \xrightarrow{\varphi} M \xrightarrow{\psi} N \longrightarrow 0
$$

is exact if and only if for all left R-modules D, the sequence

$$
0 \longrightarrow \operatorname{Hom}_{R}(N, D) \xrightarrow{\psi^{*}} \operatorname{Hom}_{R}(M, D) \xrightarrow{\varphi^{*}} \operatorname{Hom}_{R}(L, D)
$$

is exact.
Hint: We have done the forward direction in class. The converse is more complicated than the covariant version; you may want to choose different modules D to establish the various conditions determining exactness of the original sequence. For example, to show ψ is surjective, let $D=N / \operatorname{Im}(\psi)$ (the cokernel of ψ), and $\pi: N \rightarrow D$ the natural projection. Now consider $\psi^{*}(\pi)$ and its implications.

As a second hint, to show $\operatorname{Im}(\varphi) \subseteq \operatorname{Ker}(\psi)$, you need only show that $\psi \circ \varphi=0$. Choose $D=N$ and consider the identity map $i d_{N} \in \operatorname{Hom}_{R}(N, D)=\operatorname{Hom}_{R}(N, N)$.
4. Let R be a ring with identity. An R-module M is finitely generated if there is a finite subset $\left\{m_{1}, \ldots, m_{t}\right\}$ of M so that every element of M can be written as an R-linear combination of the m_{i}.
Consider the short exact sequence of R-modules:

$$
0 \longrightarrow L \xrightarrow{\varphi} M \xrightarrow{\psi} N \longrightarrow 0
$$

(a) Show that if L and N are finitely generated, so is M.
(b) Show that if M is finitely generated, so is N.
(c) Show by example that if M is finitely generated, L need not be.
5. Determine the number of group homomorphisms $\mathbb{Z}_{12} \oplus \mathbb{Z}_{14} \rightarrow \mathbb{Z}_{20}$, and explicitly characterize them by specifying their action on $(\overline{1}, \overline{0})$ and $(\overline{0}, \overline{1})$.

